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LEPAGEAN 2-FORMS IN HIGHER ORDER
HAMILTONIAN MECHANICS 1. REGULARITY®)

OLGA KRUPKOVA
(Received March 12, 1985)

Abstract. In this paper the notion of the Lepagean equivalent of a locally variational form (= Euler-
Lagrange form) is introduced. Applied to the higher order Hamiltonian mechanics it enables one
to reformulate the Hamilton theory for the whole set of equivalent lagrangians. Consequently,
a generalization of the standard regularity condition is obtained, and a general Legendre transforma-
tion is proposed and investigated. These concepts carry over all main properties of the classical
first order theory.
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1. NOTATION

Throughout this paper we will consider smooth finite-dimensional manifolds
and smooth mappings, and use. the standard summation convention (unless
otherwise explicitly stated). Our underlying structure will be a fibered manifold
n:Y—> X,dimX =1, dimY =m + 1. We denote by d the exterior derivative
of forms, i, the contraction by a vector £, * the pull-back. The s-jet prolongation
of Y (resp. the natural projection of jet spaces, resp. the s-jet prolongation of j*Y)
is denoted by m, : j°Y — X (resp. 7, s :j"Y = j°Y, where 0 < 5 < r, resp. (=,), : j°(j'Y) =
— X). The fiber chart on Y (resp. the associated chart on jY, resp. on j*(j'Y)) is
denoted by (V,), ¥ = (t,4°) (esp. (V) ¥y = (4, 45), tesp. (V) (4))
W) = (t,qip), where 1 < 6 <m,0=<i=<r, 0=k <s;in particular, ¢g5,0 =
=q% 4i.0 = 4i> 90,x = q%- The set of (local) sections of 7 is denoted by I'(r).
If yeI'(x) is a section then the s-jet prolongation of y is denoted by j*y. For the
module of p-forms (resp. m;-horizontal p-forms, resp. m,,-horizontal p-forms,

*) The present paper is the final version of the paper ‘“Generalized regularity in Hamiltonian
mechanics*¢ (in Czech), prepared for the Student Scientific Conference in Mathematical
Physics, Charles University of Prague, Prague, March 1984.
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0. KRUPKOVA

0 < r < s, resp. k-contact p-forms, k = 1) on j°Y the notation QP(j°Y) (resp.
Q%('Y), resp. QF (j°Y), resp. QF ~kk(j*Y)) is used. The =-horizontalization,
n-contactization, m,_,-horizontalization, and 7,_-contactization are denoted by
h, p, h, and p, respectively. Recall that in a fiber chart (V, ¥), ¢ = (t,¢°) on Y it
holds A(f) = fo m,4y.,, tesp. h(f) = fo (my—1),+, . for a function f on V, < j'¥,
resp. on (V,_,), = j'(;*"'Y), and

(1.1) h(dt) = dt,  h(dq]) = qi+,dt, O0=<iZr-—1,
h(dt) = dt,  h(dg]y) = qfx+1dt, O0ZLiss—1, 0sksgr—-1.

The forms p(dg{) (resp. p(dgfy)) on j'Y (resp. on j(j*~'Y)) are denoted by of
(resp. @{); we note that

Wf =dgf — gl dt, O0<i<r—l,

@l =dgl, — qixerdt, 0ZLigs—1, 0Sksr—L

(1.2)

The formal derivative operator with respect to ¢ relative to 4 (resp. k) is denoted
by d/dt (resp. d/dt).
Recall that each form n € Q% -:¢(j*Y) admits a unique decomposition

(1.3) n=~hm+n +n+ ..+n,
where n, € QP~RkjY), 1 < k < p.

2. INTRODUCTORY REMARKS

In this section we recall some facts concerning the theory of Lepagean forms
[6], [9] and locally variational forms [7], [8], adapted to fibered manifolds with
one-dimensional bases, and we recapitulate the main ideas of the theory of Hamil-
ton extremals contained in [10], [11] since we shall follow them in this paper; we
shortly comment our approach to the theory.

Let s = 2 be an integer. A form g€ Q,‘-,-zy(j"lY) is called Lepagean if do
admits a decomposition 7!:,_1 dg = E + F where E Q3(j*Y) and Fe Q"*(j*Y).
If g is Lepagean then there exists an integer r such that k() € Q4("Y) (up to Ty s—1
or m,_, ). The form A(g) is denoted by A and called a lagrangian of order r for w,
and the corresponding Lepagean form g is said to be the Lepagean equivalent of A.
To each lagrangian A the Lepagean equivalent exists and is unique; hereinafter it
will be denoted by @,. (We note that for dim X > 1 this generally is not the case
[9D. In a fiber chart (V, §), ¥ = (¢, ¢°) on Y, where 1 = L dt, we get

r-1

@.1) - @,=Ldt+ Y f*iaf,
=0

where
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HAMILTONIAN MECHANICS

2.2) fiom 3y "k(‘”‘ ) 1<isr

k=0 dt qQi+k

In this way there arises a mapping Lep : QL(j’Y)2 1> 0, ¢ Qp-1(j*~1Y) such
that

(2.3) n2r,2r—l d®,=E, + F,,
where

. d" oL
(2.4 E,=E/(L)dq°Adt, E/L)= Z( l) =)’

qk
and
r— l 2r—1-i i+1

@.5) F,=% To oy o,

v
i=0 k=0 Oqy

The form Ee Q%1(j*Y) is called the Euler-Lagrange form of 1, and the mapping
e:Qxj'Y)s A —» E, € Q41(j*Y) is called the Euler-Lagrange mapping. Two la-
grangians A, € QY(*Y), 1, € QL(G'Y), k = I, are said to be equivalent, A, ~ 1,,
if E;, = E;, (up to a projection).

Let E€ Q¢(j°Y) be a form. E is called variational if there exist an integer » and
a lagrangian 1 e Q(j"Y) such that (up to a projection) E = E,; E is called locally
variational if j°Y can be covered by open sets in such a way that E restricted to each
of these sets is variational. We recall a method for constructing a lagrangian to
a locally variational form (see e.g. [8]). Let a € Q%-1y(j*Y) be a form, suppose
that du = 0. There exists a covering of j°Y by open sets W such that on each Wa =
= dp for a form g defined on W. Let (V, ¥), Y = (¢, g°) be a fiber chart on ¥
satisfying V,n W + 0, let

s—1
(2.6) o= 2 Elw? A dt + F:,’;w"/\ o, F*=_F"
Y iL,k=0

be the chart expression of «. Define a mapping y, : [0, 1]x U —» U where U =
=V,n Wby

(27) x,(u, (ta qda cees q:)) = (t’ uqaa cery uQs)’
and put
-1 s—1 s—-1
(2.8) Ax Z q° j(E' o x,) du)dt + Zo (Z2q, j(F"‘v 0 x,) u du) w}.

It holds dda + A dx = «; hence ¢ = Aa. Obviously, if Ee Q¥1(j°Y) is a locally
variational form then 1 = AE is a local lagrangian of order s for = such that (up
to a projection) E = E; on U.

Now, let us turn to the theory of Hamilton extremals of a lagrangian, as it is
investigated in [10] and [11]. Let A€ Q4(j'Y) be a lagrangian, @, its Lepagean.
equivalent. A section 6 € I'(m,,—,) is called a Hamilton extremal of the lagrangian 4,
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oO. KR‘JPKOV A

if for each m,,_,-vertical vector field £ on j2r-1y it satisfies the equation

(2.9) 5*igdo, = o
(see also [4]), or, equivalently,
(2.10) H,0j'% =0,

where H, is the Hamilton form of A (see [1 17). If a section y € I'(n) is an extremal
(= Euler-Lagrange extremal) of A then § = j2*"!y is a Hamilton extremal of A.
Now, a question is studied under which conditions there exists a one-to-one
correspondence between extremals and Hamilton extremals of A, or, which is the
same, under which conditioas each Hamilton extremal § is regular, i.e. satisfies
& = j* ~1y where yis an extremal of A. Then, assuming that an (in that way obtained)
regularity condition is satisfied, a Legendre transformation is constructed as
a transformation of local coordinates on j2"~!Y which transforms the form @,
to a “canonical form’’; in these coordinates the equations for Hamilton extremals
of A (2.10) take the form of the Hamilton canonical equations.

This approach has lead not only to a better understanding of the geometrical
meaning of the Hamilton theory but it has also provided a method to study regu-
larity conditions, and to introduce Legendre-transformation formulas more general
than the ’standard” ones

2
(2.1 det( oL )4:0,
gy 0g;
and
(2.12) pi=f* 0gigr—-1, 1Z£0<m,

respectively — see e.g. [2], [3], [10]; (hete A = L dt is the chart expression of
a lagrangian A€ Q4(j'Y) in a fiber chart (V, §), ¥ = (t,4°) on Y, and f}*! are
defined by (2.2)). Let us recall some results of [11] adapted to fibered manifolds
* with one-dimensional bases. In that paper a class of lagrangians A e Q2(j2Y) is
studied which in each fiber chart (V, ¥), ¥ = (¢, ¢°) on Y can be expressed in the
form A = L dt where

(2.13) L =L, + g,45,

and the function L, (resp. g,, | < ¢ < m) on V, depends on ¢, q*, g; (resp. ¢, q*)
only. For such lagrangians the regularity condition has been found to be of the
form

‘ 2
(2.14) det (355 + 08 —aﬁL) +0,
oq 0q°  0q70q;
and “momenta’ have been defined by
aLO aga _ < agu + agv

T 0t \ag | ag

(2.15) P, )qi, 1o m.
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HAMILTONIAN MECHANICS

One may ask the question whether there are any other regular lagrangians than
(2.11) and (2.14) and, if the answer is positive, how do they look like and how the
corresponding Legendre transformations should be defined.

In this paper we develop a Hamilton theory directly from variational equations;
this theory is independent of the choice of equivalent lagrangians for the cor-
responding Euler-Lagrange expressions. We introduce the notion of a Lepagean
2-form (2 =dim X + 1) in analogy with Lepagean (I-)forms and associate
Hamilton extremals with the Lepagean equivalent of a locally variational form.
We obtain a general regularity condition (which contains (2.11) and (2.14) as
special cases), find general Legendre transformation formulas and derive the cor-
responding Hamilton canonical equations. The paper contains several examples
showing the relation of our approach to the known results (lagrangians of type
(2.11) and (2.14)), and demonstrating the proposed ideas and methods explicitly.

3. LEPAGEAN 2-FORMS

Our aim is to extend the mapping Lep to 2-forms in such a way that the following
diagam commutes:

Lep
A > 91
£ d
Lep
Fig. 1

Let p =2 1 be an integer. A form ae szp-xy(j”Y) is called Lepagean if (1) it
admits a decomposition a = E + F, where Ee Qy'(j?Y) and Fe Q"%(j?Y),
and (2) da = 0. Obviously, the one contact part E of a Lepagean 2-form is a locally
variational form. We shall show that each Lepagean 2-form is uniquelly determined
by its one-contact part.

Theorem 1. The following conditions are equivalent:
(1) a form a € Q2-1y(j?Y) is Lepagean, ,
(2) in each fiber chart (V,¥), ¥ = (t,4°) on Y a is expressed in the form
r—1 .
3.0 «=E,dq° Adt +, kZ_OFf,"',w;A wy, Fi%=—F4,
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0. KRUPKOVA

where the functions E, satisfy for 0 £ 1 < p

0 p k-1
0q, 0q7  k=T+1 dt aqy
and

L}

p—Jj~k—1 X . 1
33 Fi== (—D”'(”{’)-‘i;( "EL—), 0<j+k<p—1,

v
1=0 £\ 0G)sk+141

(3.4 F=0, p<j+k=<2p-2.

Proof. Let o€ Qj-1y(j’Y) be a Lepagean form. In each fiber chart (V, ),
Y = (t,q%) on Y a can be expressed in the form (3.1). Computing dx we get

E
(3.5) OE, _ OE, + 2.ii,(pw) =0,
q" 0q° dt
(3.6) %—2%(1«“25)-2173;"‘1:0, 1<k<p-—-1,
9
3.7 iE— —2F%P 1 =,
0q,
(3.9) L E 4 ES LR =0, 1sjksp-t,
(3.9 Firtk=0, 1£k<p—1,
jk ~1j ki
(3.10) OFor  %Few | Fe _o  o<jki<p.

oqf a4 aq;

The relations (3.7) and (3.6) cnable one to express the functions Fo¥, 0 < k <
< p — 1, by means of FE,: oac easily obtains

p—k—1 1
(3.11) P =L - (% ) ogkgp-1
2 3 v
: C1=0 dt’ \ 0qi+1+1

The relations (3.9) and (3.8) lead immediately to (3.4), and, after some labour,
to the formulas

p—j—k=-1 _ 1 .
G12) Fh= 3 (—n"“(" ! 1);‘?‘—,(F1,:"+"°), 25j+ksp-1,

j,k*0
and

p—k—1 _ 1
@13) FE=y (—pn(FFImN) Lo g,
1=0 l dr*

Applying the antisymmetry condition Fi = —F% and the relation (3.11) to (3.12)
(resp. to (3.13)) we can express all the (nonvanishing) functions F#*, j, k #+ 0,
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HAMILTONIAN MECHANICS

by means of E, (resp. we obtain some restrictive relations for the functions E,),
namely, using the formula

" s+i\_ s+n+1)
(3.14) i;o( ; /—< " )

we get
) p—i-k-1 1
Fi‘;:% Y (-1)"*’("?’)1,( UaE‘——~>, l1<j+ksp-1,
=0 AN

(3.15) k 0.

This formula for j + 0 together with (3.11) is precisely the relation (3.3). Letj = 0
in (3.15). Substituting (3.11) into it we obtain after some straightforward calculation
the equations (3.2) for 2 < I £ p. The equations (3.2) for / = 1 (resp. / = 0) are
obtained from the antisymmetry relation F,, = —F,, (resp. from (3.5)). Finally
we shall show that the relations (3.10) are fulfilled identically. Put

jk 1j -kl
OFl, . oFy . OFy

(3.16) G = v ,
© og¢  0q, dq¢

0<jklsp, 1=o,v,esm

Differentiating the relations (3.5) —(3.8) with respect to g, we obtain
oFf

3.17) Gl =
(] aq g

0,0 0=Zj,k<p, 1=Zagv,0Zm

One can prove using (3.8) that the functions (3.16) satisfy
(3.18) (G + Gl 4+ GEETV 4 GERIT =0,
1 <j,k1=p, l1=o,v,05m

Now, proceeding by induction starting from (3.17) we get G2, = 0for0 < j, k,/ <
=p,1=20,v,0=<m
The converse is proved in an obvious way.

We note that a close assertion is due to [5].

Let Ee QY1(j°Y) be a locally variational form. According to Theorem 1 there
exists a unique Lepagean 2-form ag such that h(i;xg) = i,E for each m,-vertical
vector field £ on j*Y. The form ay will be called the Lepagean equivalent of E.

Corollary. Let E € Q%(j*Y), i.e. in each fiber chart (V,¥), ¥ = (t,q°) on Y let
E = E,0° A dt, where E,, 1 £ ¢ < m are functions on- V. The form E is locally
variational iff E,, 1 £ ¢ £ m, satisfy (3.2).

Notice that the relations (3.2) were firstly proved in [12], and that they are
a particular case (for dim X = 1) of the ADK-conditions [1], [7].
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0. KRUPKOVA

As a simple consequence of the ADK-conditions we obtain the following result,
which however, is of fundamental importance for the theory of Hamilton extremals.

Theorem 2. Let E € Q3 1(j°Y) be a locally variational form, let ag be its Lepagean
equivalent. Then age Q*(j*~1Y).

Proof. Let (¥, ¥), ¥ = (¢, ¢°) be a fiber charton Y, let E = E @° A dt, where E,,
1 £ ¢ < m are functions on V,, be the chart expression of E. According to

Theorem 1
s—1s—-1-i

(3.19) ap = E,w’Adt+ Y, Y FlroAwy,
. i=0 k=0
where
w 15T i+ d OE
F¥== Y (._1)'“< >__,<——v——"—> 0i+kss-—1
2 =0 ! dt \0qisx+1+1
(3.20)

Obviously, F¥ are defined on V,,_;_g4x) i-€. ag€ Q%(j*71Y). We shall show
that a is projectable onto j*~!Y. We can write (3.19) equivalently in the form
(of a non-invariant decomposition)

s—1
(3.21 oap = (E, — ¥ 2F0qu+1) dq° Adt —
k=0
s~1s—1-i . s—1s—1~-i "
—Z z 2F:1kvql‘;+1dq?/\dt+z Z chdqg/\dql:-
i=1 k=0 i=0 k=0

s—1
It is enough to show that (a) F*, 0 < i+ k <s — 1, and (b) E, — Y 2F gy,
K=o

are defined on V,_,.

(a) Differentiating the relations (3.5) and (3.6) consecutively with respect to
435> 951> ---» 4%+, and taking into account that the functions E,, 1 £ 0 < m
depend on t,q", ..., g only, we obtain dF%/dg8 =0, s<I<2s—1,0 £k <
< s — 1. In a similar way the relations (3.8) imply dF¥/9q? = 0,s <1 £ 25 — 1,
1<i,k£s—1. Thence

oF% .
(3.22) — =, sS1£2s—1—(i + k).
oqt
(b) Taking into account that E, are defined on ¥, we conclude that the coefficients
atqg.,in(3.2)for/ = s — 1have to vanish, i.e. °E,/dg; 9¢2 = 0,1 < 7, v,0 < m.
Hence

(3.23) E, = A, + B,q;, l=so=m,

where 4,, B,, depend on ¢, g% ..., q2_, only. Consequently, we obtain
. =2 s—2
(3.24) E, — Y 2Fygiy — 2F0* a0 = A, — ¥ 2F Yat sy,
k=0 k=0
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which, according to (3.22), is a function defined on V,_,.
This completes the proof.

Let A; € Qy(j*Y), 1, € Q4(j'Y), k 2 r, be two equivalent lagrangians, @,,, 0,,
their Lepagean equivalents. Using Theorems 1 and 2 one can see easily that there
exists an integer s < 2r such that d@,, € Q*(j*"'Y), and dO;, = dO,, (up to a
projection). Hence the form d@, is the same for all lagrangians, equivalent with
a given lagrangian A. Notice that this implies the well known result 4, ~ 4, iff 4; =
= A, + h(df) for a form df on j*"1Y.

4. HAMILTON EXTREMALS

In what follows let & € Q%'(j°Y) denote a locally variational form which is
supposed to be not w, i -projectable for any k < s; notice that this means that
in each fiber chart (V, ¥), ¥ = (¢, ¢°) on Y & is of the form & = E, dq° A dt where
the functions E, (defined on V) satisfy (3.2), and, for some ¢ and v

JE,
og5

Denote by {4} the set of all equivalent lagrangians associated with & and let
ag € Q*(j*~1Y) be the Lepagean equivalent of &. To each form & € Q¥ '(j°Y) there

exists a unique form # e Q*(j'(j*~'Y)) such that for each m,_,-vertical vector
field £ on j*~1Y

(4.2) it = (i)

(4.1 +0

(compare with [11]). According to Theorem 1 5 is uniquelly determined by &;
we shall call # the Hamilton form of the set {1} of all equivalent lagrangians
associated with &. In a fiber chart (V, ), ¥ = (¢, ¢°) on Y where «, is given by
(3.19) and (3.20) one obtains from (4.2)

s=1

4.3) # =Y H.dq] Aadt,
i=0
where
s—1
(44) Ho = Ea + Z ZF%(‘I;J - q;-!-l)’ 1 é g é m,
k=0

s—=1-i

45  H,= Y 2FXNai,—@i+1), 15iss—-1, 1205m.
k=0

Theorem 3. The form 3¢ is locally variational.

Proof. The local variationality of & means that j°Y can be covered by open
sets W such that there exists a lagrangian 15 on each W, satisfying E,, = & |y
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0. KRUPKOVA

and @;,, € Q'(j*"'Y) (up to a projection). Put
(4'6) Z", = h(@lw)‘
Obviously, 4y is a local lagrangian of order one for mn,_,. Let (V, ¥), ¥ = (¢, ¢°)

be a fiber chart on Y such that ¥, W % @. Denote Ay = Ldt on V,n W.
Then 4, = L dt, where

' s—1
4.7) L =L +.;)f‘a+l(q‘i,,1 = qi+1)s
i*10 £i £ s — 1 are defined by (2.2). The Lepagean equivalent @3, of 4,
is defined on an open subset of j*(j*!Y) and
o aL py o i+l o a gt i+1_0o
(4.8) @z, = Ldt + ) — o = (L +~Z‘of" (971 — gi+1))dt + -Z‘of" Wy,

k=0 0qy, 1

i.e. it is (m,_,);,0-projectable and (up to this projection) @3, = ©@,,,. (Notice
that @;,, is nothing but the anholonomic decomposition of ()}, @, O its
horizontal and contact part on j!(j*~!Y)). Hence, locally, for each n,_,-vertical

vector field ¢ on j*~ 1Y

4.9) ipngd = h(iog) = h(i; dO,,) = h(i;s dO3,,) =
= h(ijy(Es,, + Fip)) = ipgEiys

i.e. for each W

4.10) H = Ej,,.

This completes the proof.

Let us define the canonical embedding 1 :j°Y —j!(j*~'Y) by the equations
gi101=¢i{+1, 0 £i <5 — 1. Obviously, on each W,

@.11) ¥y = Ay

Ay is therefore called the extended lagrangian associated with Ay [11].
According to Theorems 3 and 1 to each Hamilton form 5 its Lepagean equivalent

a € Q%(j1(j*"1Y)) can be associated, which, in each fiber chart (¥, ¥), ¥ = (¢, ¢°)

on Y, where o is expressed in the form (4.3)—(4.5), has the chart expression

s—1 . s=1 1 aHl
(4.12) tp= Hydgi Adt + ¥ ——2a] A @y.
i=0 k=0 2 dqy :
Obviously, a, is (m,-1);,0-projectable and (up to this projection) a, = o,.
Consider the form & € Q¥ '(j°Y), let az € Q%(j°* 1Y) be its Lepagean equivalent,
let 6 e I'(m,— 1) be a (local) section. & will be called a Hamilton extremal associated
with & if for each m,_,-vertical vector field £ on j*~'Y

(4.13) 5*(igtg) = 0.
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HAMILTONIAN MECHANICS

Obviously, ¢ is a Hamilton extremal associated with & iff for each m,_,-vertical
vector field £ on j*~'Y

(4.14) jlé*(i]lgax) = 0,
resp. iff
(4.15) H ojlé =0,

where # (resp. a,) is the Hamilton form associated with & (resp. the Lepagean
equivalent of ). The first order equation for § (4.14), resp. (4.15) is called the
equation for Hamilton extremals. Locally it is represented by a system of equations

(4.16) Hioj'6=0, 0gigs—-1 1=Z20<m,

where H: are given by (4.4) —(4.5).

5. REGULARITY

Consider the form & (recall: & € Q3'(j°Y), is locally variational and satisfies
(4.1)), let {A} denote the set of all corresponding equivalent lagrangians. It is easy
to prove that if 1 € I'() is an extremal of A € {A} then j*~!y is a Hamilton extremal
associated with &. We say that a Hamilton extremal é € I'(n,_,) (resp. the form &)
is regular if 6 = j*~ 'y for some extremal y € I'(r) of Ae {A} (resp. the mapping
y = j*"1y of the set of extremals into the set of Hamilton extremals associated
with & is bijective) (compare with [10], [11]).

Theorem 4. Let § : [ - j*~'Y be a Hamilton extremal associated with the form
& € QY (j°Y), defined on an open set I < X. Suppose that to each point x € I there
exists a fiber chart (V, ), Y = (t, q°) on Y such that é(x) € V,_, and

(5.1 det (a—E‘!) +0
dy,

at i, +_,8(x), E, being defined by the chart expression & = E, dq° A dt. Then § is
regular.

Proof. We can proceed in analogy with [10]. Let x € I be a poiat satisfying
the assumptions of Theorem 4. Since 6 is a Hamilton extremal associated with &,
it satisfies the equations (4.16). For 1 < i < s — 1 these equations can be con-
sidered as a system of m(s — 1) linear homogeneous equations for the m(s — 1)
unknowns (gx,; — qx+1)s 1 Sv=<m, 0 <k <s—2 This system posesses
a unique (trivial) solution iff the matrix (F%) where the rows (resp. columns) are
labelled by i, o (resp. k, v), i.e. the matrix
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Fr‘l,() 0
s—2,0 ps—2,1
(5'2) P:‘uv Pov .
I}x,o FLt I';l.s—z
is regular. However, according to (3.3)
(53) Fi;:‘“‘=(—1)i—é~-aE:’, 0<iss—1L
0q,
Hence for the absolute value of the determirant of the matrix (5.2) we obtain
s—1 s—1
(5.4) | det (F) | = (%) det < aEg)
0q;
Under the assumption (5.1) the system has the unique solution
(5.5) Gy~ ae1=0, O0=k<s—2
at the point d(x), i.e.
d(gi29) | g0 ) |
. ve1(0 = | ==
(5.6) gi+1(6(x)) dt Ix i lx,

in such a way we get 6(x) = ji~ 'y where y = m,_,o 0 §, and, since the point is
arbitrary, & = j*~'y. It remains to show that y is an extremal relative to . Consider
the equations (4.16) for i = 0. Using (5.5) we obtain

0E,
04g;

5.7 (E, + (Gs-11 — q:,)>0j15 =0, 1£e6Zm
Writing E, in the form (3.23) and substituting into (5.7) we obtain equations which
along j* coincide with the Euler —Lagrange equations.

The relation (5.1) is obviously independent of the choice of the fiber chart (¥, y/);
we will call it the regularity condition. Notice that if the regularity condition is
satisfied at each point of j°Y then each Hamilton extremal is regular, i.e. the form &
is regular. In this case (4.14), resp. (4.15) is called Hamilton equation; locally
it represents a system of sm first order equations, equivalent with the m s-th order
Euler —Lagrange equations E,0j% =0,1 £ 0 £ m.

We note that for s odd (s = 2¢ + 1 for an integer ¢ = 0) (3.2) imply 0E,/dq; =
= —0E,|0q3,1.e. the matrix (3E,/ds;) is antisymmetric. Hence a necessary condition
for a form & € Q}!(j>*1Y) to be regular is that m = dim ¥ — 1 be even.

A lagrangian A is called regular if the Euler — Lagrange form E; of A is regular.

Example 1. Let 4 be a lagrangian of order one for n, A = L dt its chart expression
in a fiber chart (V, ¥), ¢ = (¢, ¢°) on Y. A is regular iff it satisfies one of the follow-
ing two conditions:
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2
) det( (ZLV>=!=0,
9491 0q}
2 2 2
(9) fil’v=0 for each o, v, and det( adLv— oL )#0
dqy g 09° 9q; 041 04"

Notice that in the case (1) (resp. (2)) E; € Q¢*(j2Y) (resp. E; € Q%(j'Y)).

Example 2. It is worthwhile to describe all lagrangians of order r < 2, leading
to regular second order Euler — Lagrange expressions. Let & € Q%1(j2Y); in a fiber
chart (V, ¥), ¥ = (t,q°) on Y we have & = E, dq’ A dt, where the 'functions E,
defined on V, satisfy (3.2). Consider all lagrangians A for & of order r < 2 defined
on V, and denote 4 = L dt. It holds

oL d [ oL d? ( oL )
5.8 Ea = —— + ,
G oq° dt <0q‘1> de* \ aq5
where
(5.9) o’L o’L L

=0, - =0.
dq3 0q; 0q910q;  0q3 0q;

Computing 9E,/dq; and using (5.9) we obtain the regularity condition (5.1)
in the form

2 2 2 2
(5.10) det(— oL, 9L avLa+—d—( ‘31‘6»*0
oq70q;  09°0q3  9q30q° 4t \dq) dq3

Notice that (5.10) contains (2.11) and (2.14) as special cases. In an analogous way
one could rewrite the regularity condition for higher order lagrangians related to &.

6. LEGENDRE TRANSFORMATION

Consider the form & e Q%'(j*Y) and its Lepagean equivalent #, € Q*(j*"'Y).
Let (V, ¥), ¥ = (¢, q¢°) be a fiber chart on ¥, (3.19)—(3.20) the chart expression
of a, in this chart. Denote by ¢ the integer defined by the relation (s/2) — 1 < ¢ £
< (s/2).

Theorem 5. j*~ 'Y can be covered by open sets W such that the restriction of a,
to V,_, © W can be expressed in the form
s—c=1
6.1 ag=—dHAdt+ Y dpiadg;
k=0
for some functions H, p§, 0 Sk <s—c—1,1 £v < m defined on Vi_y 0 W.

" Proof. The form a, is closed, i.e. there exists a covering of j*=1 ¥ by open sets W
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such that on each W a, = dp for a form ¢ € Q'(W). Using (2.6) —(2.8) we obtain
(up to a projection)

1
6.2) Q= Aa, = (q° j (E, 0 1) du) dt +

s—1 s—1

+ Z (qu:jj(F':vo Xs—1) U du) wy

on U = V,_, n W. We shall show that there exist functions f, H, and p},0 < k <
<s—c—1,1=<v=<mon U such that (6.2) can be equivalently expressed

in the form
’ s—c—1

(6.3) | e=~Hdt+ Y ptdg}+ df.
k=0

We define a mapping Ys—,5- : [0, 1]x U = U by

(64) Xs—l.s—c(v’ (ta q09 cery qg—c—l ’ q:~c’ R ‘1:— 1)) =

= (t’ qd’ (EER) q:—c—l’ vq:—c’ [EEX) U(I:_l)-
Put

s—1
(6.5 =y
k=s-

R

1-k 11
Z 2qux°6‘. é(Fg‘vOXs—lOXs—l.s—c)ududv+

+ (P(t, qea LA qg—c-l)y

where ¢ is an arbitrary function, and define

s—k—-1 a
6o B 22q,J(Fﬂoxs-l)udu—a—fv, Osk<s—c—1,
9k

s—1s-k-1

(67 —-H=4q" I(E Oxs)du—Z Z 2q.qk+1I(F,voxs x)udu—if-

Substituting (6.6), (6.7) and the relation

af s=k—1

(6.8) Z 2q,j'(F Os-)udu, s—c<k=<s-1

ax
‘into (6.2) we obtain (6.3). Computing a, = dp, the proof is completed.

The expression (6.1) will be called the canonical form of ay on U, and each of the
functions H (resp. p¥, 0k <s—~c—1, 1 £v £ m) defined on U by (6.7)
(resp. (6.6)) is called Hamilton function (resp. momentum) of &.

We shall study the question under which conditions momenta may become
a part of coordinates on U.

Theorem 6. Let the functions p¥, 0 Sk <s—c—1, 1 £v < m be defined
by (6.6).

(1) Let s be even (s = 2¢). The following two conditions are equivalent:
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(i) for each function ¢ = ¢(t, q% ..., q°~,), (U, P5._,), where P,.., = (1, q°, ..
ees GO 1y Pas s P 1), 1 £ 0 £ m is a coordinate chart on j*~1Y,

(ii) & is regular.

(2) Let s be odd (s = 2¢ + 1). Choose a function ¢ = ¢(t,q% ..., q%) in such
a way that on an open set U c U

(]
(6.9) det (ﬁ”—) +0.
aq;
Then the following two conditions are equivalent:
(i) for each function ¢ = (1, q% ..., q%) such that (6.9) is satisfied, (U, 9,.),

where Py, = (1,9% oo G5~y Por s PS 1, PE), 1 £ 6 < m is a coordinate chart
on j*°Y,
(i) & is regular.

AR

Proof. Let us denote by A the Jacobi matrix of the transformation ¢,_ ¥, .
Computing the Jacobian we obtain

k
(6.10) detA:‘det<%), 0<k<s—c—1, c<i<s-l1.

oq;
It is easy to prove by a direct computation, using (6.6), (6.8), (3.10), and
. 1 . s—1 1 aFik
(6.11) F =2 [(F%0 g-)udu+ Y gf | (——Ao xH)u’ du,
o =0 o \ dqf
that
k i
(6.12) aL:—-gp—:=2Ff,kv, 0k=ss—-c-1, 0Lig<s—c—1,
dq;  Ogx
5P: ik . .
a——;=2F,,v, 0Zk<Zs—=c-1, s—c<i<s-1.
qi

(1) Let s = 2¢. Using (6.12) we obtain det A = (det 2F%))°, 0k L ¢ — 1,
¢ £i £2c — 1. Hence the absolute value of det A satisfies
c

det (a—b:"—) .
anc

Thus the matrix A is regular iff the form & is regular.
(2) Let s = 2¢ + 1. Then according to (6.12)

(6.13) |detA| =

21:20,0 2Fc+1,0 apv
av av
oq;

: c—1
(6.14) det A = . 2FSHhe-t 9py _
0q;
0 o
dq;
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i.e. the absolute value of det A satisfies

(6.15) | det 4] = | det <—9‘—5-) | det (i’L)‘
. aq2c+l | 5Qc
We shall show that a proper choice of a function ¢ = ¢(t, g% ..., g%) gives rise

to a set of momenta p¥, 0 Sk <S¢, 1 v < m of & satisfying (6.9). Let p},
0 £k £¢,1 £v £ mbemomenta of & defined on U for which det (9py/dq?) |, = 0
at a point x e U. Put 4 = (a,,), where a,, = dp;/dq? |,.. Choose a (m x m)-matrix
B = (b,,) insuch a way thatdet (4 + B) % 0.Let ¢ = o(t, g% ..., ¢°) be a function
satisfying 82¢/dq% dq} |, = b,,. Then the continuity of the function det implies
that

=C 2
(6.16) det(ip—"— ;g ) +0
dq;  0q;0q,

on an open set U c U, Usx. Hence p*, 0 < k < ¢, 1 < v < m defined by

op
0q;

(6.17) py=Dy+

form the desired set of momenta of &. Obviously, (6.15) guarantees that these
functions belong to a chart on j2¢Y iff & is regular.
This completes the proof.

The local coordinates ¢,_; = (£, 4,705, 0<i<c -1, 0k <s—c—1,
1 £ o, v £ m of Theorem 6, defined on an open subset U (resp. U) of V,_, =
< j*~1Y are called Legendre coordinates related to the form & € Q¥'(j*Y), and the
transformation 9,_ ;.Y is called Legendre transformation related to &.

We shall show that the above Legendre transformation can be, in the case of
lagrangians (2.11) and (2.14), identified with the Legendre transformations (2.12)
and (2.15) related to these lagrangians.

Example 3. Let A€ Qx(j'Y) be a lagrangian, let (V, ¥), ¥ = (1, ¢°) be a fiber
chart on Y, put 4 = L dt in this chart. Suppose that A is regular in the standard
sense, i.e. satisfies (2.11). Obviously, the Euler —Lagrange form E; e Q¥(j*'Y)
of A satisfies (5.1), i.e. 4 is regular in the generalized sense. Computing oz, = dO,
we obtain easily

i+1 k+1
(6.18) F.‘,‘i=—i<91!———3f'—>, 0<iks2r—1,
2\ oq; g7
where f}, 1 < i < r are given by (22), and ff =0,r + 1 i< 2r — 1. Let us
compute the momenta p¥, 0 Sk <r — 1, 1 £ v £ m of E, according to (6.6).
We obtain
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2r—1 2r—-1-k 11 afi+l
(6.19) = ~ Z DM H j ) ( "v O X2p-1 0 xz,_l.,)udu dv +
k=r i=0 00 \ Ogy

r—1

1
+ (p(t’ qﬂ’ esey qg-l) = —i"zoqlag (f;-l o X2r—l) du + ¢s
where @(t, 4% ..., g?_,) is an arbitrary function, and, putting ¢ = 0,

(6 20) _ j(fk+1 2r—-1-k fk+L _ g+1
p OXZr 1)du+ Z qld‘- aa OXZr 1 udu ’

0k=sr-1,

which is the formula (2.12).

Example 4. Let 1€ Q}(j2Y) be a lagrangian of type (2.13). Suppose that A
satisfies (2.14). Then E, is regular, i.e. 1 is regular. Computing ag, € Q3(j'Y) we
obtain

(6.21) F33=L<if_5._ _?Zi), Fox__("f- __qf_:)

av

dq° 09" 09°  0qy
where
oL oL d oL oL d 7] y
f:: o=ga’ f;: p --d—-( ¢>= :——-_gl—-’—g—:ql.
095 0q1 t \ 9¢3 091 at aq
(6.22)
Thus
(6.23) =2q} q’I J'(F"v1 o X0 )u,l) ududo + o(t, g% =

e} ()

where @ is an arbitrary function. (We note that we have used the formulas

(6.24) jl (_6_]% o x,) udu = jzd[v( _E <‘Zf"i o X1> u du) © Xm] =
0 \dq 0 0 \ogq

11 f2
o0

+ 0 x1) du + ¢(t, 4%,

daq°
because f,” is independent of g7, and
1 ) 1 9
(6.25) [(fJox)du=gq; | ( Y 20 X1) du |O 11,1 dv + (1, ¢°) =
0 o \Jq,
11 af 1
=q1f | (,. % 011011.1>“d“ dv + o(t, 4%,
0 0 \dq;

where ¢ is an arbitrary function). Putting ¢ = 0 in (6.23) we obtain
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626)  p,=20 J(F:’:’oxl)udu + 2 I(F omudu = 2 =
q

1

=((f oxl)du+qj(f"ox‘>udu+qu(f"oxl>udu——
0q

0 Y q:

—2q‘{6,f('2”oxl>udu I( ox1>u du =

2 .
fi_g e _ 0o _ 08 _( agv N 3g0>q:
o  oq

oq" oqy O
which is the formula (2.15).

Theorem 7. Let the form & € Q%'(j*Y) be regular, consider a Legendre chart
(U, 9,—,) on j*~ 'Y related to &. Let § € I'(n,— ) be a section defined on an open set
I < X such that 6(I) = U. é is a Hamilton extremal associated with & iff it satisfies
the system of equations

0H d E ) 0H d , , _
6.27) —aq" ——d;'( 09) =0, Py +7t-(¢1105)—0,
l1<o<m, 0<i<<c—-1,
if s is even (s = 2c¢), resp.
0H dq; d 0H d
6'28 - C__(L‘ )_——( 005) -+ lﬂUé):O’
(6.28) P 8"d P o T dr (q
1 <o<m, 0<i<c-1,

c—1 o a v
S Ly 04 4 oy 4 ("i - a"°>—“’—<p:oa)=o, 1g0sm,
ap; k=0 Oq; dt opS opS

if sis odd (s = 2c + 1).

Proof. Let us denote by ((U);, {9,-1)1), (Ps-1)1 = (1, ¢f Py, a5 1 Py, 1), where
1f0,vEmMm0LigLe—-1,05k<s5s—c— 1,thechart onj‘(j"‘Y)associat-
ed with the Legendre chart (U, §,_,). Writing a, in the canonical form (6.1) we
compute the Hamilton form J# associated with & according to (4.2). Considering g7,
¢ Si<s—1 as functions of the Legendre coordinates we obtain, taking into
account (6.12), the relation

oq7 , ,
(6.29) ——7=0, cfis<s—1,i+k<s—1.
) apv

Using (6.29) for i = ¢ we get for the Hamilton form of & the following chart
expression

ect oH oq) . . . oH
(6.30) # = {Z [<_ L _ fla Py - p,,;)d% + (-——T + q;'_l)dp:,] +
i=o dq; Og; op,
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s—c—-1 c—1
+ Y [— oH + L (aq‘ - aq")pv ,]dp,}/\dt
i=c op, k=0 opy  0p;
in the chart ((U);, (¥,-,),)- Consequently, according to (4.14), resp. (4.15), é is

a Hamilton extremal associated with & iff it satisfies the system (6.27) and (6.28)
if s = 2c and ¢ = 2¢ + 1, respectively.

The equations (6.27), resp. (6.28), i.e. Hamilton equations associated with the

(regular) form & € Qy'(j*Y) expressed in Legendre coordinates of &, will be called
Hamilton canonical equations.

7. LAGRANGIANS OF MINIMAL ORDER

Similarly as in the previous sections let & € Q¥ '(j*Y) denote a locally variational
form satisfying (4.1), and ¢ an integer such that (s/2) — 1 < ¢ £ (s/2).

We shall show that the Hamilton function and momenta of £ can be equivalently
expressed by means of certain local lagrangians of &.

Lemma 1. Consider the form & € Q¥*(j°Y). j*~°Y can be covered by open sets Z

such that on each Z there exists a lagrangian A, satisfying (up to a projection)
6 ‘Z = El min *

Proof. The local variationality of & means that j°Y can be covered by open
sets W such that on each W there exists a lagrangian A € Q3(W) satisfying & |y < E;

(up to a projection). Let (¥, ¥), ¥ = (¢, ¢°) be a fiber chart on Ysuch that ¥V, n W=
= U # 0. Then A can be constructed by setting

1
(1.1) A= A& = (q° [ (E,o x,) du) dt
on U (see (2.8)). Put
(7.2) Ain = 4 = h(df)

where the function fis given by (6.5). Obviously, Amia is a local lagrangian for &;
we shall show that it is 7, ,_-projectable. Put Apin = Lo df. Then

1
(7.3) Loo = q° [ (E,j0 x,) du —
0
s~1 s—-1-k 11

do
( Z 2 2qkqiSI(F0'VOXS 10 Xs—1, s- c)ududv_ dt

where ¢ = (1, ¢% ..., g8_._,) is an arbitrary function. Computing dLui/3gy for
s —c¢+ 1 £k <5 we obtain using (6.8)
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OLyin _ 0 of of
g Lm0 (on,)du)—~< >-____=
oqx oqy ( I dt dqy 0qx—,

1
ch (aq —2F3F 7t - 2— (F,f))o xudu -
k
s—k—1

o - - d
= zq,s(rzv*'*w';: ) Jo o du -

i=1

- 245 I (F 5 + Foo" Yo y,_yu du = 0,
fors —c + 1 <k £s — 1, because of (3.6), (3.8) and (5.3); similarly

oL t (9E 0,5-
(75) -E;P-:—"' = q’(’; <'—a-q—: - 2I'2;’ 1)0 XU du=0
. s

because of (3.7). Hence A;,, defined on an open set Z c j*~¢Y, Z = n,,-.U,
is the desired lagrangian.

Notice that for each function ¢ = (¢, g% ..., ¢%_._,) A, is a (local) lagrangian
of minimal possible order for &; explicitly, Ay, is of order ¢ (resp. ¢ + 1)if s = 2¢
(resp. s = 2¢ + 1). We note that such a lagrangian was firstly constructed in [12].

Lemma 2. Let (V, ¥), ¥ = (t, q°) be a fiber chart on Y, let (6.6) (resp. (6.7)) (for
an arbitrary but fixed function @) be the momenta (resp. the Hamilton function)
of the form & € Qy'(j°Y), defined on an open set U = V,_,. Then it holds

(7.6) Pt =i, 1SvEmO0Zk<s—c—1,
s—c—1
.7 H = —Lmin + Z (fmin)r'-lqi’*-l

for a lagrangian A, € Qx(ny_ 1 s-U) of &, Amin = Luin dt, where Ly, and (fmin)e >
1 £i £s — c are defined by (1.3) and

s=c—-1-1i
09 Guk= 3 0L (Z‘m) l<igs—c 1505m
k+1

respectively, in the chart (V, uﬁ).

Proof. From (6.3) we obtain (up to m, )

s—c—1 s—c-1

(7.9) Aag — df = (—H + hzo Pidr+y) dt + kz,o PvOks
where f is given by (6.5). Let A, € Q(n,_ ;- U) be defined by (7.2). Then

s—c—1

(1.10) O 3min = Loy dt + 2 (Srins" '}
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with L. (resp. (fmn)s) given by (7.3) (resp. (7.8)). Notice that 8(fmin)e' */0q) =
= —2F% =0for0<i<s—c—1,ie O, is projectable onto j*~'Y. Thus
using (7.2) and the fact that 4a, is a Lepagean 1-form we obtain (up to a projection)
Aag — df = 0 46 — Onuyy = O, in. This completes the proof.

Theorem 8. Let A, be an arbitrary lagrangian of minimal order for & € QL1(*Y),
defined on an open set Z < j*~°Y, denote by Ann = Lmi dt its chart expression in
a fiber chart (V,¥), ¥ = (t,q°) on Y such that V,_.nZ = U + §.

(1) Let s = 2c. The following conditions are equivalent:

(1) Apin is regular on U,

(ii) at each point of U

aszin

(7.11) det <———) +0,
0q¢ 9q;

(1“) (nz—cl——l.cU’ ¢2c—1)’ where 'ch—l = (t’ q,’ ceey q:—l’ (fmin):’ cves (fmln):),
1 < 6 < mis a Legendre chart of &.
(2) Let s = 2¢ + 1. The following conditions are equivalent:
(1) Apin s regular on U,
(ii) at each point of U

2 2
(7.12) det< aa Lain - — aqL“‘i" ) *0,
aqc+1 aQC aqc aqc+ 1

(iii) there exists a lagrangian 22,, of & on an open set U c U such that

(nl-c%c-!-l U’ ¢2c)’ where 'p2c = (ta qa: cery q:—la (f:in):a eeey (fllolll);+1)s 1 § 4 é
< m is a Legendre chart of &.

Proof. Theorem 8 is a consequence of the regularity condition (5.1), and of
Lemma 2 and Theorem 6.

Corollary. Let & € Qy*(j°Y) be regular, consider a covering of j*~'Y by open
sets U such that for each U (U, 95_,) is a Legendre chart of &. If s = 2c (resp. s =
= 2¢ + 1) then each system of Legendre coordinates 9., of & defined on U arises
from a lagrangian of minimal order A, € Qy(n5.— .. U) of & (resp. from a lagrangian
of minimal order A2, € Q¥ M2c .o +1U) of & which satisfies the condition

2r0
(1.13) det <-a_’:m*__) +0
042+, 0q;
at each point x € m¢,c+1U)-
Example 5. Let A€ Q3(j2Y) be a lagrangian of type (2.13), & = E, € Q}'(j*Y)
its Euler-Lagrange form. Let us construct a (local) lagrangian of minimal order
of &. According to (7.3) and (6.23) we obtain Amin .= Lmin 42, where
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. (oL ot OL
(7.14) Loin =4 g (—(;q‘lo xl)du + 4 g (—;‘,’—o xl)du -
o ([ dgs vi( 0 (dg,
_ql[é (_‘-ﬁ—oxl>du+q(j; P —r Jon udu +
+4q}
0

! 0 dga a dga d a
(’5;;:(7;_ OXL udu —Lo_qlhdt‘“:L—?;'(gdql)

up to do/dt where ¢ = ¢(t, ¢°) is an arbitrary function and L is defined by (2.13);
hence Amin ~ A. Moreover

0Lnye 0L, dg, [0g, . 08\ .
(15 (=T =2 - —( b+ g,>q1=.p,,
oqi  dq} ! o¢" 0q

for 1 £ 6 £ m (compare with (6.26)). According to Theorem 8 (¢, q°, p,) are
Legendre coordinates of & iff at each point of the domain of definition of the
functions p, Ay, satisfies det (8°L,,;./097 0q;) + O.

Our last example is meant to illustrate in a simple situation the notions and
techniques introduced in this paper.

Example 6. Consider the fibered manifold n : Rx R - R, denote by ¢ (resp.

(t, x,y), resp. (¢, x,»,%,y,%,y,%,¥)) the canonical coordinates on R (resp.
R x R?, resp. the associated coordinates on j3(R x R?)). Let E € Q%*(j3(R x R?)) be
of the form

(7.16) E=(-mXx~y)dx Adt + (—m,j + X)dy A dt,

where m,, m, are positive constants. The form (7.16) is obviously variational and
regular satisfying (3.2) and (5.1), respectively. Thus one may search for the
Hamilton canonical equations of E. From (3.3) we obtain

1 1 1
CAUNINYCCOE Y U S
the remaining ones being equal to zero (up to the relation F% = —FM) Let us

compute the momenta and the Hamilton function of E. Substituting (7.17) into
(6.5) we obtain

11
(1.18) f=2y ] [ (Fylox20 x22)ududv +
o0 .
11
+2)x [ [ (Foyo X120 X2,2)u dudv + o(1, x, y, %, ) =
00
1. ..
=5 &y —yx) + o(t, x, y, %, ),
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where ¢ is an arbitrary function. Thus (according to (6.6) and (6.7))

1 1 do 1 . Odo
1 _t. 1 _e 50 _ o o _ 99
(7'19) Px = 2 y 2 mx ox ’ Px y + 2 myx ax ’
_1__1. 1 __ag 0 . _1;_ ._O(P
py = 2 X TmZy aj) s Py = —X + 2 myy -a_y—)
and
(7.20) H= —1—~m,x + = 1 myy? + Xj — yx + — af

2

Let us choose ¢ in the form

2 at

1 ) .
(7.21) @ = -‘7("11’“‘ + m,yy).
Then we obtain from (7.19)

(7.22) pr=~—5J, Pi=J+mi,

py==5%  P=—%+my.

Theorem 6 guarantees that (1, x, y, py, py, P5, P3) are Legendre coordinates of E
on j3(Rx R?) & R x R? x R? x R%. Obviously, the inverse Legendre transformation
formulas are given by

(7.23) x=2p,, &= —py—2mypl,

y==2p;, §=pi~2mp,.
Expressing the Hamilton function (7.20) in the Legendre coordinates we obtain
(7.29) H =2p0p; — 2p)p; — 2my(p})* — 2my(py)".

Consider a section 8 :R3t - (8 60(t)) € Rx(R>x R*x R?), where §,(1) =

= (x(2), (1), p2(t), Py %t), pA(0), P3(1)) in the Legendre coordinates. Using Theorem 7
we get that & is a Hamilton extremal of E iff the functions x(¢), y(t), p2(t), ,(t),
pi), p;(t) satisfy the system of Hamilton canonical equations

dpy _ dpy _ dx . dy .4
(7.23) i =% T T A TR AR

dp! 1 dp} 1

e e

Notice that & =j?y where y: R3¢t - (f,7(t)) € RxR? yo(t) = (x(1), y(t)) is

a section satisfying the Euler — Lagrange equations —m,% — y = 0, —m,j + X =
= 0. Solving the system (7.25) one can find all Hamilton extremals of E. We note
that another choice of the function ¢ = ¢(t, x, y, %, y) such that (6.9) is satisfied
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would lead to the Hamilton extremals of E expressed in another coordinates on
i*(R x R?). .
The minimal lagrangian of E corresponding to the choice (7.21) is of the form

Amin = Lmin dt where
NP NP ISR
(7.26) Lo = 5 mi& + 5 map® + = (7% — 55);
k+1

evidently (fmin)y ' == Prov=x k=001
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