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ARCHIVŮM MATHEMATICUM (BRNO) 
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LEPAGEAN 2-FORMS IN HIGHER ORDER 
HAMILTONIAN MECHANICS I. REGULARITY*) 

OLGA KRUPKOVA 
(Received March 12, 1985) 

Abstract. In this paper the notion of the Lepagean equivalent of a locally variational form ( = Euler-
Lagrange form) is introduced. Applied to the higher order Hamiltonian mechanics it enables one 
to reformulate the Hamilton theory for the whole set of equivalent lagrangians. Consequently, 
a generalization of the standard regularity condition is obtained, and a general Legendre transforma­
tion is proposed and investigated. These concepts carry over all main properties of the classical 
first order theory. 

Key words. Lepagean form, locally variational form, Hamilton form, Hamilton extremal, regular 
variational problem, Legendre transformation, Hamilton equations. 

MS classification. 58 F 05, 70 H 05. 

1. N O T A T I O N 

Throughout this paper we will consider smooth finite-dimensional manifolds 
and smooth mappings, and use. the standard summation convention (unless 
otherwise explicitly stated). Our underlying structure will be a fibered manifold 
n : Y -* X, dim X = 1, dim Y = m -h 1. We denote by d the exterior derivative 
of forms, i5 the contraction by a vector £, * the pull-back. The s-jet prolongation 
of 7(resp. the natural projection of jet spaces, resp. the s-jet prolongation of fY) 
is denoted by ns :j'Y-* X(resp. nriS :]

rY-+fY, where 0 <£ s < r, resp. (nr)s :f(jrY)-> 
-> X). The fiber chart on Y (resp. the associated chart on fY, resp. on f(jrY)) is 
denoted by (V,i/,), *l/ = (t,q*) (resp. (K r ,^ r), ^ r = (t9 q*), resp. ((Vr)s,(i]/r)s) 
(Ws = (J9 <litk))> where 1 ^ a ^ w, 0 g i ^ r, 0 g k g s; in particular, #S,o.= 
= #*> Quo = 4i> #0,* = tff*- The set of (local) sections of n is denoted by T(n). 
If y eT(n) is a section then the s-jet prolongation of y is denoted by fy. For the 
module of /reforms (resp. ^-horizontal p-forms, resp. 7rs,r-horizontal /?-forms, 

*) The present paper is the final version of the paper "Generalized regularity in Hamiltonian 
mechanics*' (in Czech), prepared for the Student Scientific Conference in Mathematical 
Physics, Charles University of Prague, Prague, March 1984. 
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O. KRUPKOVA 

0 ^ r < s, resp. fc-contact p-forms, k §: 1) on jsY the notation Qp(jsY) (resp. 
Qvx(jsY), resp. Qp

rY(jsY), resp. Qp~k'k(jsY)) is used. The 7r-horizontalization, 
rc-contactization, 7r$_1-horizontalization, and ns-t-contactization are denoted by 
h,p, h, and p, respectively. Recall that in a fiber chart (V, {//), \j/ = (t, qc) on Y it 
holds h(f) ==fo nr+ltr, resp. /i(f) = fo (7rs_ i) r + 1, r for a function f on Vr c jrY, 
resp. on ( V s ^ ) r c r / O ^ F ) , and 

(1.1) h(dt) = A, h(dq\) = q?+1 * , 0 = / = r - 1, 

£(dt) = A, A(d^%) = qlk+i dt, 0 = i <: s - 1, 0 ^ Jk = r - 1. 

The forms p(dqf) (resp. p(dqftk)) o n / Y (resp. on/0 ' 5 " 1 -^) ) are denoted by <of 
(resp. a)<%); we note that 

. cof = dqf -qUxdt, O g / g r - 1 , 

^SU = dq£* - q,%+i A, 0 = i = s - 1, 0 = k =~ r - 1. 

The formal derivative operator with respect to t relative to h (resp. h) is denoted 
by d/df (resp. d/dt). 

Recall that each form rj e Qp
ja-iY(jsY) admits a unique decomposition 

(1-3) r] = h(rj) + t]l + t]2 + ... + >7P, 

where */*e fi|,~*'*(;sy), 1 ^ k <> p. 

2. I N T R O D U C T O R Y R E M A R K S 

In this section we recall some facts concerning the theory of Lepagean forms 
[6], [9] and locally variational forms [7], [8], adapted to fibered manifolds with 
one-dimensional bases, and we recapitulate the main ideas of the theory of Hamil­
ton extremals contained in [10], [11] since we shall follow them in this paper; we 
shortly comment our approach to the theory. 

Let s —̂ 2 be an integer. A form QG Q)s-2Y(js~xY) is called Lepagean if dg 
admits a decomposition n*iS.l dQ = E + F where Ee Q\jl(jsY) and Fe Q°t2(jsY). 
If Q is Lepagean then there exists an integer r such that h(g) e QX(JY) (up to nrtt-i 
or ns-lr). The form h(Q) is denoted by A and called a lagrangian of order r for 7r, 
and the corresponding Lepagean form Q is said to be the Lepagean equivalent of k. 
To each lagrangian A the Lepagean equivalent exists and is unique; hereinafter it 
will be denoted by Gx. (We note that for dim X > 1 this generally is not the case 
[9]). In a fiber chart (V, i/>), \jf = (t, qa) on Y, where A = L dt, we get 

(2.1) 0A = Ldr + E 1 f rV, 
1 = 0 

where 
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HAMILTONIAN MECHANICS 

(2.2) fiJŮ-tffílL.), 
*=o dtk \Oq'i+J 

1 < i < r. 

In this way there arises a mapping Lep : Qx(jrY)sX -• 0xe QJr-iy{j2,""1Y) such 
that 

(2.3) n*2r,2r-id0x = EX + FX, 
where 

(2.4) Ex = Eff(L) dq* A dt, Eff(L ) = £ ( - 1) ' -^- ( - | ^ \ , 
fc=o dtk\dqlJ 

and 

(2-5) FA = S I ^ V ^ A © T . 
i=:0 * = 0 otIfc 

The form EG QY
 1 ( j 2 T ) is called the Euler-Lagrange form of A, and the mapping 

8 : Qx(jrY) s X -> FA G Qj;1(j2ry) is called the Euler-Lagrange mapping. Two la-
grangians Ax e i2i(jkY), A2 G .0£(/Y), .fc _ /, are said to be equivalent, Xx ~ X2, 
if KAl = KA2 (up to a projection). 

Let E e QY
 1(jsY) be a form. JE is called variational if there exist an integer r and 

a lagrangian A G O i ( j T ) such that (up to a projection) E = Ex; E is called locally 
variational iff5 Y can be covered by open sets in such a way that E restricted to each 
of these sets is variational. We recall a method for constructing a lagrangian to 
a locally variational form (see e.g. [8]). Let a e QJ9-iY(jsY) be a form, suppose 
that da = 0. There exists a covering o f / T by open sets PVsuch that on each Wcc = 
= dq for a form Q defined on W. Let (V, xj/), \j/ = (t, qa) be a fiber chart on Y 
satisfying Vs n W =j= 0, let 

(2.6) a = £ £>r A dt + % F;fc
vcof A atf, F* = - F£, 

i = 0 ) i,* = 0 

be the chart expression of a. Define a mapping ^ , : [ 0 , l ] x f y - > U where U = 
= VsnW by 

(2.7) X.(", (t, q\ ...,q's)) = (f, uq", ...,uq's), 

and put 

(2.8) Ax = v £ «j? J (£t o ac-) «*«) * + 1 ( Z 2^? J (F* o &) « d«) ©J. 
i=0 0 k = 0 i = 0 0 

It holds dAa + A dec = a; hence £ = Aa. Obviously, if KG QY
tl(jsY) is a locally 

variational form then I = y4K is a local lagrangian of order s for n such that (up 
to a projection) E = KA on U. 

Now, let us turn to the theory of Hamilton extremals of a lagrangian, as it is 
investigated in [10] and [11]. Let Xe Qx(jrY) be a lagrangian, ©x its Lepagean, 
equivalent. A section 8 e r(n2r-x) is called a Hamilton extremal of the lagrangian X 
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if for each 7t2r ̂ -vertical vector field £, on j 2 r - - J'it satisfies the equation 

(2.9) S\d0x = O 

(see also [4]), or, equivalently, 
(2.10) Hxoj18^o9 

where Hx is the Hamilton form of X (see [l 1]). If a section y e F(7r) is an extremal 
(= Euler-Lagrange extremal) of X then b =y 2 r - 1 y is a Hamilton extremal of X. 
Now, a question is studied under which conditions there exists a one-to-one 
correspondence between extremals and Hamilton extremals of X, or, which is the 
same, under which conditions each Hamilton extremal 8 is regular, i.e. satisfies 
5 = j2r~1y where y is an extremal of A. Then, assuming that an (in that way obtained) 
regularity condition is satisfied, a Legendre transformation is constructed as 
a transformation of local coordinates on j2r~iY which transforms the form 0X 

to a "canonical form"; in these coordinates the equations for Hamilton extremals 
of X (2.10) take the form of the Hamilton canonical equations. 

This approach has lead not only to a better understanding of the geometrical 
meaning of the Hamilton theory but it has also provided a method to study regu­
larity conditions, and to introduce Legendre-transformation formulas more general 
than the "standard" ones 

(2.H) d e t ( - ^ - ) * 0 , Wэд:/ 
and 

(2.12) p i - / " 1 , 0 £ i £ r - l , l £ < x £ ir­
respectively — see e.g. [2], [3], [10]; (here X = L dt is the chart expression of 
a lagrangian X e QxifY) in a fiber chart (V, ^), ^ = (t, qa) on Y, and f j + 1 are 
defined by (2.2)). Let us recall some results of [11] adapted to fibered manifolds 
with one-dimensional bases. In that paper a class of lagrangians Xe Qx(j2Y) is 
studied which in each fiber chart (V, i/>), \j/ = (f, q°) on Y can be expressed in the 
form X = Ldt where 

(2.13) L-=L0 + g,<?*2, 

and the function L0 (resp. gff, 1 ^ a ^ m) on V2 depends on /, qv
9 q\ (resp. t, qy) 

only. For such lagrangians the regularity condition has been found to be of the 
form 

(2.14) detf^+^-ik) + 0> 
W dq° dq\dq\) 

and "momenta" have been defined by 

(2.15) p„ = ** - % - (***• + °h-)q\, 
K p" dq\ st \dq* dq") 

1 < a < m. 
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One may ask the question whether there are any other regular lagrangians than 
(2.11) and (2.14) and, if the answer is positive, how do they look like and how the 
corresponding Legendre transformations should be defined. 

In this paper we develop a Hamilton theory directly from variational equations; 
this theory is independent of the choice of equivalent lagrangians for the cor­
responding Euler-Lagrange expressions. We introduce the notion of a Lepagean 
2-form (2 = dim X + 1) in analogy with Lepagean (l-)forms and associate 
Hamilton extremals with the Lepagean equivalent of a locally variational form. 
We obtain a general regularity condition (which contains (2.11) and (2.14) as 
special cases), find general Legendre transformation formulas and derive the cor­
responding Hamilton canonical equations. The paper contains several examples 
showing the relation of our approach to the known results (lagrangians of type 
(2.11) and (2.14)), and demonstrating the proposed ideas and methods explicitly. 

3. LEPAGEAN 2-FORMS 

Our aim is to extend the mapping Lep to 2-forms in such a way that the following 
diagam commutes: 

Lep 

Fig. 1 

Let p ^ 1 be an integer. A form a e Q2

jP-iY(jpY) is called Lepagean if (1) it 
admits a decomposition a = E + F, where Ee QY

,x(jpY) and FeQ°'2(JpY)9 

and (2) da = 0. Obviously, the one contact part E of a Lepagean 2-form is a locally 
variational form. We shall show that each Lepagean 2-form is uniquelly determined 
by its one-contact part. 

Theorem 1. The following conditions are equivalent: 
(1) a form cc e Q2

P-iY(jpY) is Lepagean, 
(2) in each fiber chart (V, xjt), \j/ = (t, q°) on Y a is expressed in the form 

(3.1) 
P - 1 

a = Eвdq'bdt+ £ *{&'Лa>l, F * = -F*, 
Л*=o 

101 



O. KRUPKOVA 

where the functions Ea satisfy for 0 ̂  / ^ p 

a«I 59f K-T+1 Vv dt* ' Vstjj/ 
and 

(3.3) ^..i'-'r^f ;'U(^-Y oSy + . S , - i , 
2 - = o \ ' / dV \dq)+k+l + 1 J 

(3.4) Fit = 0, p g j + fc ̂  2p - 2. 

Proof. Let a e QJP-IY(JPY) be a Lepagean form. In each fiber chart (V, \j/), 
if/ = (r, #*) on y a can be expressed in the form (3.1). Computing da we get 

(3.6) -5% - 2 4 ( C ) - 2F,0;'-1 =0, l g k g p - 1 , 

(3.7) ^ - 2F£ ' - 1 = 0, 

0.8) 4r(F*] + F°;t'k + F"~i = °' 1 -l k -p ~l> 

(3.9) Fp„;l'k = 0, 1 £ fc g p - 1, 

dFJ* 8Fy dFkl 

(3.10) ----2- + -^-«-- + - ^ s . = 0 , 0 < j , k, / _ p. 
dqf dql dq'j ~ 

The relations (3.7) and (3.6) enable one to express the functions F°J, 0 ̂  k ^ 
^ P — 1, by means of Ea: one easily obtains 

(3.11) F̂  = I F s V l ) ^ Y - ^ ) , OSfcSp-1. 
^ i=o dtl\dqk+l + 1J 

The relations (3.9) and (3.8) lead immediately to (3.4), and, after some labour, 
to the formulas 

(3.12) Fik ="" ' l ~ W + , ( * + ! ~ 0 ^ ( F i : ^ ' ' 0 ) , 2SJ + k g p - l , 
J=O \ « / dr 

j , fc * 0 
and 

(3.13) j£ -'I~W+,(* + J " ^ ( F ^ 0 ) , 1 _ fc _ p - 1. 
,=o \ * , / dt 

Applying the antisymmetry condition Fa° = —F^ and the relation (3.H) to (3.12) 
(resp. to (3.13)) we can express all the (nonvanishing) functions F;jJ, /, k 4= 0, 
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by means of Ea (resp. we obtain some restrictive relations for the functions Em\ 
namely, using the formula 

j.(T)-('+:+,> 
we get 

(3.15) fc+0. 

This formula forf =# 0 together with (3.11) is precisely the relation (3.3). Letj == 0 
in (3.15). Substituting (3.11) into it we obtain after some straightforward calculation 
the equations (3.2) for 2 = / = p. The equations (3.2) for / = 1 (resp. / == 0) are 
obtained from the antisymmetry relation Fav = — Fva (resp. from (3.5)). Finally 
we shall show that the relations (3.10) are fulfilled identically. Put 

r) Fjk f) Flj h Fkl 

(3.16) Ga
k
v[ = ^f + -^f- + ?±f , 0 = 7, fc, / = p, l^o9v,Q%m. 

dqf dqk dqff 

Differentiating the relations (3.5) —(3.8) with respect to q*+1 we obtain 

(3.17) Git£ = 4 ? = ° ' 0=;,fc = p, l = ( 7 , v , o ^ m . 
Hf 

One can prove using (3.8) that the functions (3.16) satisfy 

(3.18) " (̂O + G^1 ,M + Gff*°~Ul + °^'Z"1 = °' 
1 g h k, I = P, 1 = o, v, Q = m. 

Now, proceeding by induction starting from (3.17) we get GJ
av

l
Q = 0 for 0 ^ j , k, I = 

<; p, 1 <; o, v, g ^ w. 
The converse is proved in an obvious way. 

We note that a close assertion is due to [5]. 

Let Ee QY
i(jsY) be a locally variational form. According to Theorem 1 there 

exists a unique Lepagean 2-form a£ such that h(i^<xE) = i^E for each 7rs-vertical 
vector field f on jsY. The form a£ will be called the Lepagean equivalent ofE. 

Corollary. Let Ee Q1
Y

ti(jsY), i.e. in each fiber chart (V, ij/), \j/ = (t, q*) on Y let 
E = Eacoa A dt, where Ea, 1 S o ^ m are functions on Vs. The form E is locally 
variational iff Ea, 1 = a <; m, satisfy (3.2). 

Notice that the relations (3.2) were firstly proved in [12], and that they are 
a particular case (for dim X = 1) of the ADK-conditions [1], [7]. 
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As a simple consequence of the ADK-conditions we obtain the following result, 
which however, is of fundamental importance for the theory of Hamilton extremals. 

Theorem 2. Let Ee Q];1(jsY) be a locally variational form, let ctE be its Lepagean 
equivalent. Then ciEe Q2(Ja"lY). 

Proof. Let (V, \f/), \j/ = (t, qa) be a fiber chart on Y, let E = EaCQ° A dt, where Eay 

1 g a g m are functions on Vs, be the chart expression of E. According to 
Theorem 1 

(3.19) a£ = Eaof A dt + £ S £ V * X A a>;, 
i=o *=o 

where 

* -4 : -_-Wf:* ) ' ( -_5- - - ) . o s ,+* s . -1 . 
2 i-o V l J dt1 W+„+ l + 1 / 

(3.20) 
Obviously, F* are defined on V2s-l-li+k^ i-e- a£e-22(;2 s _ 1Y). We shall show 
that a£ is projectable o n t o / - 1 Y We can write (3.19) equivalently in the form 
(of a non-invariant decomposition) 

(3.21) a£ = (E„ - Z2F%ql+,) dq" A d. -
* = 0 

-'S S £ '2n"vfl„+1 d<7f A dt + ' _ _ £ F * d«f A dql. 
i = l fc=0 t = 0 * = 0 

s - 1 

It is enough to show that (a) Fa\, 0 ̂  i + k ^ s - 1, and (b) £„ - £ 2/̂ v*q* + 1 
* = 0 

are defined onKs-. l t 

(a) Differentiating the relations (3.5) and (3.6) consecutively with respect to 
q!s>q2s-i> •••j^S+i and taking into account that the functions Ea, 1 <̂  <r _g m 
depend on t, qy,...,qy

s only, we obtain dF^/dqf = 0, s = / ^ 2s - 1, 0 ^ k ^ 
^ s - 1. In a similar way the relations (3.8) imply dFaJdqf = 0, s g / ^ 2s - 1, 
1 ___ *, k S s ~ 1. Thence 

dF* 
(3.22) - ^ = 0 , s £ Z £ 2s - 1 - (i + k). 

a«? 
(b) Taking into account that £_. are defined on Vs we conclude that the coefficients 

at q°+! in (3.2) for / = s - 1 have to vanish, i.e. d2Ea\Sq] dq° = 0,1 ___ a, v, g g ro. 
Hence 
(3.23) Ea = Aa + _9„vqs

v, l j _ ^ « , 

where A,, -#,,v depend on t,qQ, ..., #£_! only. Consequently, we obtain 

(3.24) E. - Z2F%ql+1 - IF^'q^ Aa - E ' - O . + I. 
* = o * = o 
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which, according to (3.22), is a function defined on Vs-t. 
This completes the proof. 

Let Xx e Qx(jkY), X2 e Qx(fY), k ^ r, be two equivalent lagrangians, 0Xl, 0Xz 

their Lepagean equivalents. Using Theorems 1 and 2 one can see easily that there 
exists an integer s ^ 2r such that d0Xl e Q2(f~iY), and d0Xl = d0Xi (up to a 
projection). Hence the form d0x is the same for all lagrangians, equivalent with 
a given lagrangian X. Notice that this implies the well known result Xt ~ X2 iff X} = 
= X2 + h(df) for a form dfonj^Vy. 

4. HAMILTON EXTREMALS 

In what follows let £ e •Qy1(</
s-tO denote a locally variational form which is 

supposed to be not nStk-P
r<>Jectable for any k < s; notice that this means that 

in each fiber chart (V, \j/), ij/ = (t, q°) on YS is of the form S = Ea dqa A df where 
the functions Ea (defined on Vs) satisfy (3.2), and, for some a and v 

(4.1) - ^ * 0. 

Denote by {X} the set of all equivalent lagrangians associated with $ and let 
a£ e Q2(js~1Y) be the Lepagean equivalent of S. To each form S e Q);i(fY) there 
exists a unique form «?f e Q2(j1(f~1Y)) such that for each n,.,-.-vertical vector 
field { o n / " 1 F 

(4.2) i>€jf = h(ips) 

(compare with [11]). According to Theorem 1 tf is uniquelly determined by S\ 
we shall call tf the Hamilton form of the set {A} of all equivalent lagrangians 
associated with 8. In a fiber chart (V, \j/), \j/ = (t, q°) on Y where <tt is given by 
(3.19) and (3.20) one obtains from (4.2) 

s - l 

(4.3) 3/e = £ H; dgr A dr, 
i = 0 

where 

(4.4) Ha = Ea + £ 2F°a
k(qi i - *J+i), 1 ^ a ^ m, 

fc = 0 

(4.5) Hi =- ' l 2Ffv(^
v. i - qUi), 1 :£ i :£ s - 1, 1 ^ a ^ m. 

* = 0 

Theorem 3. 77ze form ^f is locally variational. 

Proof. The local variationality of & means t h a t / Y can be covered by open 
sets W such that there exists a lagrangian Xw on each W, satisfying EXw = & \w 

105 



O. KRUPKOVA 

and 0Xwe Qi(js~xY) (up to a projection). Put 

(4.6) lw = h(0Xw). 

Obviously, lw is a local lagrangian of order one for 7rs__. Let (V, if/), ij/ = (1, qa) 
be a fiber chart on Y such that Vsr\ W + ft. Denote kw — L dt on Vsn W. 
Then 2-y = £ d/, where 

(4-7) I - = - . + Z1/,<,
+ i(«t.-«3f+ .) , 

f j + \ 0 g / _J s — 1 are defined by (2.2). The Lepagean equivalent ( 9 ^ of lw 

is defined on an open subset of j1(Js~1Y) and 

(4.8) 0iw=Ldt +'_1 - ^ e>; = (L + lVi+1(«r.i - «r+1))dt + zVi+1®". 
k = 0 dqkl i = 0 i = 0 

i.e. it is (--,_.)!,Q-projectable and (up to this projection) QXw — GXw. (Notice 
that SXw is nothing but the anholonomic decomposition of (7r___)*,0 0Xw to its 
horizontal and contact part on j1(js~1Y)). Hence, locally, for each 7rs_i-vertical 
vector field £ on j*~xY 

(4.9) iJHtf = h(ipg) = "(is dOXw) = h(iJH dGXw) = 

= h(iJH(EXw + FXw)) = o^FA-r, 
i.e. for each W 
(4.10) jtf = Elw. 
This completes the proof. 

Let us define the canonical embedding i :jsY-+j1(js~1Y) by the equations 
Qu x ° l == 9*+ I » 0 = i = 5 — 1 • Obviously, on each W, 
(4.11) 1*3^ = ^ . 

yt-y is therefore called the extended lagrangian associated with Xw [11]. 
According to Theorems 3 and 1 to each Hamilton form tf its Lepagean equivalent 

a*, e Q2(j1(js~1Y)) can be associated, which, in each fiber chart (V, ifr), ^ = (t- _•*) 
on y, where ^f is expressed in the form (4.3)-(4.5), has the chart expression 

s - l s ~ l 1 r ) f f l 

(4.12) a j r = _t f id<Z fAd .+ _ - i - J ^ - o - A ©J. 
i = 0 i,k = 0 z ~ _ f t f l 

Obviously, a^ is (xcs-^ijo-projectable and (up to this projection) &# = ag. 
Consider the form 8 e Q^X(}SY), let a, e Q2(js~1Y) be its Lepagean equivalent, 

let 8 G r(- s~!) be a (local) section. 5 will be called a Hamilton extremal associated 
with $ if for each -^-vertical vector field § on js~xY 

(4.13) 5*(/ea,) = 0. 
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Obviously, S is a Hamilton extremal associated with i iff for each 7rs.^-vertical 
vector field £ on f~xY 

(4.14) jl&*{hp*) = 0 , 

resp. iff 

(4.15) Jfojx8 = 0, 

where ^f (resp. a^) is the Hamilton form associated with 8 (resp. the Lepagean 
equivalent of ^f). The first order equation for 3 (4.14), resp. (4.15) is called the 
equation for Hamilton extremals. Locally it is represented by a system of equations 

(4.16) Hl
a ofd = 0, 0 g i = s - 1, 1 ^ c = m, 

where Hl
a are given by (4.4) —(4.5). 

5. R E G U L A R I T Y 

Consider the form S (recall: Se Q)fx(jsY), is locally variational and satisfies 
(4.1)), let {X} denote the set of all corresponding equivalent lagrangians. It is easy 
to prove that if X e r(n) is an extremal of X e {X} then f~ xy is a Hamilton extremal 
associated with €. We say that a Hamilton extremal <5 e r(ns-\) (resp. the form S) 
is regular if 5 =f~1y for some extremal y e r(n) of Xe {X} (resp. the mapping 
7 -+js~1y of the set of extremals into the set of Hamilton extremals associated 
with £ is bijective) (compare with [10], [11]). 

Theorem 4. Let 5 :1 -^f~xY be a Hamilton extremal associated with the form 
$ e Q\r'x(jsY), defined on an open set 1 c J . Suppose that to each point xeI there 
exists a fiber chart (V, \j/), \J/ = (t, qa) on Y such that 5(x) e Vs^^ and 

(5.1) deJ-^Uo 
Vад/ 

at ft5f s-i5(*), Ea being defined by the chart expression $ = Ea dqa A dt. Then S is 
regular. 

Proof. We can proceed in analogy with [10]. Let xel be a point satisfying 
the assumptions of Theorem 4. Since 8 is a Hamilton extremal associated with &, 
it satisfies the equations (4.16). For 1 ^ i <; s — 1 these equations can be con­
sidered as a system of m(s — P linear homogeneous equations for the m(s — 1) 
unknowns (qlA — ql+i), 1 _ v ;g /w, O ^ k r g s — 2. This system posesses 
a unique (trivial) solution iff the matrix (Fa\) where the rows (resp. columns) are 
labelled by i, a (resp. k, v), i.e. the matrix 
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Г s - 1 , 0 
av 

-.$-2,0 т;-s-2,l 
FІ 

?1,0 L I - I . U i-l,l F l , s - 2 j 
\* *v •» av • • • x av 

is regular. However, according to (3.3) 

(5.3) F i . r i - ' = ( _ i ) < l f^L 

Hence for the absolute value of the determinant of the matrix (5.2) we obtain 

0 < í < 5 - 1. 

(5.4) ito«>'- {T)'"H%) 
Under the assumption (5.1) the system has the unique solution 

(5.5) < ? * v . i - q ; + i = 0 , 0 = k = s - 2 

at the point 5(x), i.e. 

(5.6) ql+1(ò(x)) = 
d(qloô) 

dt 
dk+1(qvoÓ) 

dtk+l 

in such a way we get 5(x) = js
x~

iy where y = T^ -^O O <5, and, since the point is 
arbitrary, 8 = / " " 1y. It remains to show that y is an extremal relative to 8. Consider 
the equations (4.16) for / = 0. Using (5.5) we obtain 

dEn 
(5.7) £ „ + -ff(ql-ul-q:))oj1d = 0, 

oq, 
\<G <m. 

Writing Ea in the form (3.23) and substituting into (5.7) we obtain equations which 
along jsy coincide with the Euler —Lagrange equations. 

The relation (5.1) is obviously independent of the choice of the fiber chart (F, \j/); 
we will call it the regularity condition. Notice that if the regularity condition is 
satisfied at each point o f / F t h e n each Hamilton extremal is regular, i.e. the form £ 
is regular. In this case (4.14), resp. (4.15) is called Hamilton equation; locally 
it represents a system of sm first order equations, equivalent with the m s-th order 
Eu le r - Lagrange equations Ee ojsy = 0, 1 ^ G ^ m. 

We note that for s odd (s = 2c + 1 for an integer c = 0) (3.2) imply dEJdql = 
= —dEJdq*, i.e. the matrix (dEJds]) is antisymmetric. Hence a necessary condition 
for a form $ e Q^l(j2c+i Y) to be regular is that m = dim Y — 1 be even. 

A lagrangian X is called regular if the Euler —Lagrange form Ex of X is regular. 

Example 1. Let A be a lagrangian of order one for n9X = Ldt its chart expression 
in a fiber chart (K, i^), $ = (t, q°) on Y. X is regular iff it satisfies one of the follow­
ing two conditions: 
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0) detf-^-Uo, 
\dq\dq\) 

d*L K e U A A J Z2L d2L \ 
(2) = 0 for each a, v, and det ~ _ ) # o. 

H\H\ \dq'dq\ dq\dqv) 
Notice that in the case (1) (resp. (2)) Exe Qr'

l(j2Y) (resp. Exe QY'1(j1Y)). 

Example 2. It is worthwhile to describe all lagrangians of order r g 2, leading 
to regular second order Euler — Lagrange expressions. Let & e QY

l(j2Y); in a fiber 
chart (V, xp), \]/ = (t, q") on Y we have S = Ea dq* A dt, where the 'functions E, 
defined on V2 satisfy (3.2). Consider all lagrangians A for & of order r g 2 defined 
on V2 and denote k = Ldt. It holds 

t<*\ 17 dL d f 8L\^ d2 f dL\ (5-8) £' = ̂ -^fe]+M^) ' 
where 

(5.9) - ^ - - 0 , - ^ - - - ^ - = 0. 
^ $ ^ 2 ^ W 2 dq°2dq\ 

Computing dEJdql and using (5.9) we obtain the regularity condition (5.1) 
in the form 

/ciAN A J &L ^ L dlL d ( &L \ \ , n 

(5.10) det + + + — ( 4=0. 

V dq\dq\ dqvdq°2 dq\dq* dt \dq\dqj) 
Notice that (5.10) contains (2.11) and (2.14) as special cases. In an analogous way 
one could rewrite the regularity condition for higher order lagrangians related to <f. 

6. L E G E N D R E T R A N S F O R M A T I O N 

Consider the form & e Q)flQ*Y) and its Lepagean equivalent a , e Q2(j*~1Y). 
Let (V, ij/)9 \j/ = (t, qa) be a fiber chart on 7, (3.19)-(3.20) the chart expression 
of dig in this chart. Denote by c the integer defined by the relation (s/2) - 1 < c ^ 
_S (J/2). 

Theorem 5. j s _ 1 Y ca/i 6e covered by open sets W such that the restriction of (xg 

to Vs^l n W can be expressed in the form 
5 - C - l 

(6.1) a / = - d t f A d f + £ dp)\dq\ 
*-=o 

for some functions H>p\, O g f c g j — c— 1, l ^ v ^ / w defined on V5_t n ivV. 

Proof. The form a, is closed, i.e. there exists a covering of/«-i y by open sets JV 
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such that on each W ccs = dg for a form g e Q}(W). Using (2.6)-(2.8) we obtain 
(up to a projection) 

(6.2) g = _4a, = («• J (£, o Xs) du) dt + 
o 

+ 1 ( E -9fj i (n*v o z,_.) u _u) o>i 
* = 0 i = 0 0 

on C7 = V,-! n W. We shall show that there exist functionsf H, andpj, 0 <£ k g 
^ s — c — 1, l g v ^ w o n U such that (6.2) can be equivalently expressed 
in the form 

s - c - l 

(6.3) e = -Hdt + £ pUql + df. 
fc = 0 

We define a mapping #s-i>s-c : [0, 1] x (7 -> CI by 

(6.4) Z,-i._-cte ( ' .«". . . . , ^ - c - i . « ? - c » - ><-_"--)) = 
= (r ,^ , . . . ,q :_ c _ 1 , < _ , , . . . , < _ ! ) . 

Put 

(6.5) / = I S I 2«J«f J J(F* o Xs^ o Xs-ltS-c)ududv + 
k = s-c i = 0 0 0 

+ <p(<,fl", ...,«•_-_/), 

where p is an arbitrary function, and define 

(6.6) p v = S £ 2 « ? J ( - * o Z . _ 1 ) « d « - - 7 - - , 0 _ » _ « - c - l , 
i=o o cqk 

(6.7) -H = q°j (£- o j_) «/« - J ' £ ' 2qKU i J (-?, o Z f- .)«<*«- - | - . 
0 fc=0 i = 0 o 0* 

Substituting (6.6), (6.7) and the relation 

(6.8) X = ^ W l ^ O L - i ) " ^ s - c ^ f c g s - 1 
0 ^ * i = 0 o 

into (6.2) we obtain (6.3). Computing as = djo> the proof is completed. 

The expression (6.1) will be called the canonical form of<xs on U, and each of the 
functions H (resp. PJ, O ^ f c ^ s - c — 1, l g v ^ w ) defined on U by (6.7) 
(resp. (6.6)) is called Hamilton function (resp. momentum) of <?. 

We shall study the question under which conditions momenta may become 
a part of coordinates on U. 

Theorem 6. Let the functions pj, O ^ . k g s - c - 1 , 1 g v ^ m be defined 
by (6.6). 

(1) Let s be even (s = 2c). The following two conditions are equivalent'. 
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(i)for each function q> = <p(t9 q
Q

9 ...9q*-t)9 (U9 ¥>2c-i)> ^here y2e-l = (f, q*9 ..., 
..., qff

c-l9pa, ...-Ptf"*1)* 1 ^ c ^ m is a coordinate chart onj2c'lY9 

(ii) $ is regular. 
(2) Let s be odd (s = 2c + 1). Choose a function <p = (p(t9 q

Q
9 ..., qQ) in such 

a way that on an open set U c U 

(6.9) det W/ 
Then the following two conditions are equivalent: 

(i) for each function <p = cp(t9 q
Q

9 ..., q
Q

c) such that (6.9) is satisfied, (U9 ip2c)9 

where f2c = (t9 q°9 ...9qc-l9 pa9 ...,p*~"\/£), 1 _S o :g m is a coordinate chart 
onj2cY9 

(ii) & is regular. 

Proof. Let us denote by A the Jacobi matrix of the transformation Vs-i^r-i-
Computing the Jacobian we obtain 

(6.10) d e t / l = d e t ( ^ ), 0 _ _ f c * . s - c - l , c < i < s - 1. 

It is easy to prove by a direct computation, using (6.6), (6.8), (3.10), and 
i s - l 1 / a r - i * 

F* = 2 J(F* o xs-i)udu + Yqíi ( ^ 
o i=o o \ cql 

(6.11) F» - 2 J(F» o x s - i )«d« + I «f J (-"TT-OZ.-1 )«2<*", 

that 

(6.12) M _ 1!4 = 2^*, 0 :g fc < s - c - 1, 0 _g . _g s - c - 1, 
0_f d.t 

O ^ B s - c - 1 , s - c ^ i ^ s - 1 . 

(1) Let s = 2c. Using (6.12) we obtain det A = (det (2F*))C, 0 _ £ * _ £ . - 1, 
c < / __ 2c — 1. Hence the absolute value of det A satisfies 

(6.13) | d e t Л | = det (J_) 

Thus the matrix A is regular iff the form $ is regular. 
(2) Let s = 2c + 1. Then according to (6.12) 

I2Ғ; 2c, 0 2Ғ; c+1.0 

(6.14) det/1 = 2ғ: c + l . c - l 

ðpv 

õq'c 

ÕPГ1 

Õq'c 

M 
õq'c 
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i.e. the absolute value of det A satisfies 

(6.15) \detA\ = det 
•\dql 

* * - ) ' . detf-M) 
»«2c+i/ \dqW 

We shall show that a proper choice of a function q> = <p(t, qQ, ..., qQ
c) gives rise 

to a set of momenta pk, 0 ^ k ^ c, I ^ v ^ m of £ satisfying (6.9). Let pj, 
0 g k = c, 1 = v g / w b e momenta of <£ defined on Ufor which det (dpc

yjdq*c) \x = 0 
at a point xe U. Put A = (a^), where affV = dp$/dq*\x. Choose a (mxm)-matrix 
5 = (£>ffv) in such a way that det (A + 2?) 4= 0. Let 9 = q>(t, qQ, ..., q*) be a function 
satisfying S2(pjdqa

cdql\x = ft-v. Then the continuity of the function det implies 
that 

(6A6) d e t f ^ + - ^ - U o 
\dq'e dqa

cdqvJ 
on an open set U c U, UB X. Hence pk, 0 ^ k ^ c, l ^ v ^ / « defined by 

(6.17) n* - ñ* J . Õ(f> 

Pv = Pv + дql 

form the desired set of momenta of £. Obviously, (6A5) guarantees that these 
functions belong to a chart onf2cY iff & is regular. 

This completes the proof. 

The local coordinates fps„x = (t, qf,PJ), 0 = / = c - l , 0 g k = s - c - l , 
1 ^ a, v g m of Theorem 6, defined on an open subset U (resp. 17) of V^^ c 
c j*"1 l rare called Legendre coordinates related to the form $ e Q^1(j*Y)9 and the 
transformation ^ - ^ ^ - A is called Legendre transformation related to $. 

We shall show that the above Legendre transformation can be, in the case of 
lagrangians (2.11) and (2.14), identified with the Legendre transformations (2.12) 
and (2.15) related to these lagrangians. 

Example 3. Let Xe Qx(fY) be a lagrangian, let (V, t/>), \// = (/, qa) be a fiber 
chart on Y, put X = L dt in this chart. Suppose that X is regular in the standard 
sense, i.e. satisfies (2.11). Obviously, the Euler —Lagrange form Eke QYX(J2TY) 

of X satisfies (5.1), i.e. X is regular in the generalized sense. Computing CCEA = d@k 

we obtain easily 

(6.18) ғ » _ - (V?1 _ ðfî+Ҷ 0 < i fc<2r-l 

where /J, 1 = 1 ̂  r are given by (2.2), and /J = 0, r + 1 = 1 ;= 2r - 1. Let us 
compute the momenta pj, 0 _ A: _5 r - 1, 1 ^ v ^ /n of £A according to (6.6). 
We obtain 
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2 r - l 2 r - l - * 2 r - l 2r- l - j fc 1 1 / p f * + l \ 

(6.19) / = - £ x ^rn(4V°X2 f-1oZ2r . t . r)Md„d« + 
*=»• i = o o o \ oqk / 

+ <P«, q", ...,qer-i) = - Z V / a i " 1 o Z2,-i)<fa + ?, 
1 = 0 0 

where <p(f, q*, ..., ^J.j) is an arbitrary function, and, putting ^ = 0, 

(6.20) Pv = j a r 1 o X2r_l)du +2r i"V {(^-oZ2r.LM = fr\ 
o ,=o o \ dqj / 

0 __ k __ r - 1, 

which is the formula (2.12). 
Example 4. Let ke Q]&j2Y) be a lagrangian of type (2.13). Suppose that A 

satisfies (2.14). Then Ex is regular, i.e. X is regular. Computing <x£jle Q2(j1Y) we 
obtain 

(6 21. F0 0 - * f5/I a / ' ". F°*-1 (dfZ *f\ \ 

re 

f - _ _ _ L _ , , fi_
 8L . d ( ̂  \ _ d u ggg agg , 

' ' a«2 g" '" <^ dt\dqj dq\ 8t b<? ^ 

where 

(6.22) 

Thus 
i i 

?oi (6.23) / = 2q\q' J J (F% o Xl o XlA) ududv + <p(t, q°) = 
o o 

= qW \ (~ o Xl) udu-q'l (/J o Xl) du + W, q"), 
o \ dq / o 

where <p is an arbitrary function. (We note that we have used the formulas 

(624) i ( f °")"""-idKi(f °")"d")°"-']-
= 1 1 \-r;0Xi°Xui)ududv9 

o o \ d»_ / 

becausefv
2 is independent of q_, and 

(6.25) IVioxddu = a: J ( - ^ J ( / i o Zi) «*« W - * + ?(',<.«) = 
o o Xcq^ o / 

^ I f i footle zUt)udu dv + q>(uq% 
0 0 \C7^_ / 

where <p is an arbitrary function). Putting ^ = 0 in (6.23) we obtain 
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(6.26) p. = 2q' . (F°¥°o Xl) u du + 2q\ f (Fj,°o Xl)udu-
o o cq 

= HfloXl)du + q'\ (y±o Xl)udu + _-j (^-oXl)u du -
o o \dq } o \dqt / 

- 2q\ } (^-0Xl)udu - qw\ (-^~oXi)u
2 du = 

o \dqv J o \dqedqy J 
, 3/J _ <3L0 5gv / 3 g v <?g.\ 

which is the formula (2.15). 

Theorem 7. Lc/ the form £ e Qyl(jaY) be regular, consider a Legendre chart 
(U, fs-t) onjs~1Y related to £. Let 8 e r(7Ts_ x) be a section defined on an open set 
I c_ X such that 8(1) c U. 8 is a Hamilton extremal associated with £ iff it satisfies 
the system of equations 

/r -.-»x uH d , i _. __ dH d , „ _ _ __ 
(6.27) - — - - T - ^ O 8) ~ 0, ——r + -r-(«?o 5) = 0, 

dq? at dpa dt 
1 <: ex <: w, 0 <: / < c - 1 , 

z/s is cvc/i (s = 2c), resp. 

(6.28) ^ - M A ^ o ^ - ^ o ^ - O , - ^ + -̂ (aroO) = 0, 
dq? dq? dt dt dpx

a dt 
1 < o <m, 0 < i < c —1, 

_.i___-

j / s /s odd(s = 2c + 1). 

Proof. Let us denote by ((tf)i> <ft-i)i). (V,-i)i = ('> qf>/>t, 9j i-/>5.i). w h e r e 

1 g cr, v <_ m, 0 _g i <_ c - 1, 0 <_ k _Z s - c - 1, the chart on j1(js"1Y) associat­
ed with the Legendre chart (CI, f s- i) . Writing a, in the canonical form (6.1) we 
compute the Hamilton form Jt? associated with £ according to (4.2). Considering qf, 
c _g i _g s — 1 as functions of the Legendre coordinates we obtain, taking into 
account (6.12), the relation 

(6.29) i-% = 0, c _ _ i _ _ s - l f i + fc<s-l. 
dp? 

Using (6.29) for i = c we get for the Hamilton form of £ the following chart 
expression 

-*"£K-i|-^-*0*+(-5+<'H+ 
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, S "^"T dH ' - 1 dq? v ' - iT1 / dq°t dq\ \ k 1 J t\ J 

*-c L ^ *=° dqi *=* V^p* dp ; / J J 

in the chart ((COi, (f s-i)i). Consequently, according to (4.14), resp. (4.15), 5 is 
a Hamilton extremal associated with £ iff it satisfies the system (6.27) and (6.28) 
if s = 2c and c = 2c + 1, respectively. 

The equations (6.27), resp. (6.28), i.e. Hamilton equations associated with the 
(regular) form £ e QY

A(jsY) expressed in Legendre coordinates of 8, will be called 
Hamilton canonical equations. 

7. LAGRANGIANS OF M I N I M A L ORDER 

Similarly as in the previous sections let & e QY
§1(jsY) denote a locally variational 

form satisfying (4.1), and c an integer such that (s/2) - 1 < c = (s/2). 
We shall show that the Hamilton function and momenta of 6 can be equivalently 

expressed by means of certain local lagrangians of S. 

Lemma 1. Consider the form & e QY'i(jsY).js'~cY can be covered by open sets Z 
such that on each Z there exists a lagrangian Amin satisfying (up to a projection) 
& Iz = ^Amin-

Proof. The local variationality of & means t h a t / Y can be covered by open 
sets ivVsuch that on each Wthere exists a lagrangian X e Qx(W) satisfying 8 \w = Ek 

(up to a projection). Let (V, \j/), ip = (t, q°) be a fiber chart on Y such that Va n W =-= 
= U + 0. Then X can be constructed by setting 

(7.1) X = A£ = (q°\(EaoXs)du)dt 
o 

on U (see (2.8)). Put 

(7.2) Xmin = X - h(df) 

where the function f is given by (6.5). Obviously, Amin is a local lagrangian for &; 
we shall show that it is 7r5,s_c-projectable. Put Amin = Lmin dt. Then 

(7.3) L^-q'KE.oxJdu-
o 

-^r ( I I *<llqU\V~°Xs-xOlLs-u,-c)ududv-^, 
a i fc = s - c i=-0 o 0 a i 

where q> = <p(t, qQ, ..., qQ-c-x) is an arbitrary function. Computing dLmJdql for 
s-c+l^fcgswe obtain using (6.8) 
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(7.4) _ ^ _ J - ( « - J ( £ . o i J ) * I « ) - 4 - ( r - - - ) - - -— 
Sql 3ql o dt\dq\) dqy

k.t 

- 2qU 1 (n7*"1,k + f„M~ 1 )o *,_.« du = 0, 
o 

for s - c + 1 ̂  k ^ s - 1, because of (3.6), (3.8) and (5.3); similarly 

(7.5) - £ * = q' J ( - ^ - 2F*-»)o *.« <*« - 0 

because of (3.7). Hence Amin, defined on an open set Z c /" c Y , Z = 7rJfS_cc7, 
is the desired lagrangian. 

Notice that for each function (p = <p(i>, qQ, ..., qj_c_ t) ,4min is a (local) lagrangian 
of minimal possible order for S\ explicitly, Amin is of order c (resp. c + 1) if s = 2c 
(resp. s = 2c + 1). We note that such a lagrangian was firstly constructed in [12]. 

Lemma 2. Let (V, \J/), ij/ = (t, q°) be a fiber chart on Y, let (6.6) (resp. (6.7)) (for 
an arbitrary but fixed function (pi) be the momenta (resp. the Hamilton function) 
of the form & e Qy^O'Y), defined on an open set U a Vs-X. Then it holds 

(7.6) pk
y = (/min)r,, l _ v _ m , 0 ^ ^ - c - l , 

(7.7) H = - L m i n + S £ (/min);
+1_r+i 

i-o 

for a lagrangian Amin e Qx(ns-itS-cU) of i, Amin = Lmin dt, where Lmin and (fmin)«> 
1 ^ i ^ s — c arc defined by (7.3) awd 

(7.8) (fmj.=~T(-irijyife-.). 

respectively, in the chart (V, i/<). 

Proof. From (6.3) we obtain (up to rtSjS_!) 

(7.9) _a , - df = ( - i f + ' £ pta+1)_< + ' £ jfc»_, 
*=o *=o 

where/is given by (6.5). Let Amine Qx
x{ns.Us-cU) be defined by (7.2). Then 

(7.10) 0XmiB = L m l n d t + ' t (/__)i+1_r 
i_0 
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with Lmin (resp. (fmJ9) given by (7.3) (resp. (7.8)). Notice that d(fmJ?lldql = 
= - 2 F * = 0 for 0 = i § s - c - 1, i.e. <9Amin is projectable o n t o / ' 1 Y. Thus 
using (7.2) and the fact that Aag is a Lepagean 1-form we obtain (up to a projection) 
Acts - df= 0Ai - @hw) = Okmm. T h i s completes the proof. 

Theorem 8. Let kmm be an arbitrary lagrangian of minimal order for 8 e Q\f\j*Y), 
defined on an open set Z ajs~cY, denote by Xmm = Lmin dt its chart expression in 
a fiber chart (V, \j/), \j/ = (t, q°) on Y such that Vs_c n Z = U -# 0. 

(1) Let s = 2c. The following conditions are equivalent: 
(0 m̂in is regular on U, 

(ii) at each point of U 

(7.11) det 
WcWJ 

fiii) (n2c\.UcU, v2c-i), where y2c_x = (t, q°, . . . , ?* - ! , (fmi„)J, ..., (fm.„)*), 
1 g cr _ m is a Legendre chart of 8. 

(2) Let s = 2c 4- 1. The following conditions are equivalent: 
(0 m̂in is regular on U, 

(ii) at each point of U 

(7.12) det ( d2Lmin < ^ n i n \ + 0 

Wc + idql dq'cdqUJ 

(iii) there exists a lagrangian kmin of 8 on an open set U c U such that 
(*2~c!c + itf, W2c\ where y>2c = (t, q°, ...,qUiAfL)l -.-(/StX*1)* l = * = 
^ m is a Legendre chart of 8. 

Proof. Theorem 8 is a consequence of the regularity condition (5.1), and of 
Lemma 2 and Theorem 6. 

Corollary. Let 8 e Oy,10',-*0 be regular, consider a covering of j*~1Y by open 
sets U such that for each U(U, ?>s-i) ls a Legendre chart of 8. If s = 2c (resp. s = 
= 2c + 1) i*hew each system of Legendre coordinates ips-i of8 defined on U arises 
from a lagrangian of minimal order Xmm e Qx(n2c- x tCU) of 8 (resp. from a lagrangian 
of minimal order Xmin e Qx(n2CtC + iU) of 8 which satisfies the condition 

(7.13) det( gL"<n U o 

at each point x e n2CfC+1 U). 

Example 5. Let Ae Qk(j2Y) be a lagrangian of type (2.13), 8 = Eke Q^l(j2Y) 
its Euler-Lagrange form. Let us construct a (local) lagrangian of minimal order 
of 8. According to (7.3) and (6.23) we obtain Ami„ = Lmm dt, where 
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+ 

a.* "--d( '̂.)'"+«ii(!JH-»-
-*[i(4H*+.•.(£(£>*)•* 

+«'i(4r(^->">*l-I'-«!^-1-iT<-*o 
up to dcpjdt where <p = <p(', qQ) is an arbitrary function and L is defined by (2.13); 
hence Amin ~ A. Moreover 

oq\ oq\ M \dqv dqa J 

for 1 g <x g m (compare with (6.26)). According to Theorem 8 (t9q
a,pa) are 

Legendre coordinates of $ iff at each point of the domain of definition of the 
functions p0 Amin satisfies det (d2LmXJdq\ dql) 4= 0. 

Our last example is meant to illustrate in a simple situation the notions and 
techniques introduced in this paper. 

Example 6. Consider the fibered manifold n : RxR2 -+ R9 denote by t (resp. 
(-*, *, y), resp. (t, x, y, x, y, x, y9 x, y)) the canonical coordinates on R (resp. 
R x it2, resp. the associated coordinates on jz(R x R2)). Let E e &J; 1(f(R * I*2)) be 
of the form 

(7.16) F = (-m^x - y) dx Adt + (-m2y + x) <fy A dl, 

where mx, m2 are positive constants. The form (7.16) is obviously variational and 
regular satisfying (3.2) and (5.1), respectively. Thus one may search for the 
Hamilton canonical equations of E. From (3.3) we obtain 

Г10 — — m FÍ0 — JLm ғi} — ғ 0 2 — ғ 2 0 — * 
xx ~~ 2 -' УУ """* 2 y ~~ yx ~~ v x ~~ 2 ' 

the remaining ones being equal to zero (up to the relation F* = -F*J). Let us 
compute the momenta and the Hamilton function of E. Substituting (7.17) into 
(6.5) we obtain 

I I 

(7.18) / = 2xy J J (F°x

2o Z 2 o Z 2 f 2 ) M du dv + 
o o , 

1 1 

+ 2yx J f (F°y

2o x2o X2.2) w dw dt? + <p(f, x , >>, x, y) = o 0 

= -тг(xy - ÿx) + ф(ř, X, y, X, ý), 
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where <p is an arbitrary function. Thus (according to (6.6) and (6.7)) 

(7.19) Px=--.y--miX-—, ^ = >. + _ m ) X - _ _ > 

_. 1 . 1 da _0 1 . dop 
p> = T x " T m-J' ~ I F ' ?> = -* + Tm*y ~ Jf 

and 

(7.20) If = — m,x2 + y m2y
2 + x>i - yx + -^- . 

Let us choose q> in the form 

(7.21) <p = - y (mijcx + m2yy). 

Then we obtain from (7.19) 

(7.22) pi = - y y, Px = y + mxx, 

I i 1 . o .. ̂  . 
Py = y x > *V = ~^ +w2y. 

Theorem 6 guarantees that (f, x, y, p*, p°, p** P$) are Legendre coordinates of E 
on j2(Rx R2) « RxR2xR2 xR2. Obviously, the inverse Legendre transformation 
formulas are given by 

(7.23) x = 2p\, x = -py - 2m2p
1, 

y = -2px9 j? = Px-2m1p^. 

Expressing the Hamilton function (7.20) in the Legendre coordinates we obtain 

(7.24) H = 2p°xp
l
y - 2p°yp\ - 2m1(p

1)2 - 2m2(pi)2. 

Consider a section <5 : i* 9 t -* (f, <50(0)eRx(R2xR2xR2) , where <50(f) = 
= W0> X0> P2(0> P°(0, pl(0, Py(t)) in the Legendre coordinates. Using Theorem 7 
we get that 8 is a Hamilton extremal of E iff the functions x(t), y(t), px(t), p%t), 
px(t),p)(t) satisfy the system of Hamilton canonical equations 

(7 25) M . ^ 0 - ^ - = 0 — = 2p1 *L=-2D1 

W ' ^ ; dr U' dr ' dt ZPy' dt ZPx' 

^jjf- - - y PS + "UP,1, -^g-- = - y py° - ro2p£. 

Notice that 5 =f2y where y : # 3 t -+ (t, y0(t))e RxR2
f y0(t) = (x(t), y(t)) is 

a section satisfying the Euler - Lagrange equations —mxx - y' = 0, — m2j> + x = 
= 0. Solving the system (7.25) one can find all Hamilton extremals of E. We note 
that another choice of the function q> = <p(t, x, y, x, y) such that (6.9) is satisfied 
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would lead to the Hamilton extremals of E expressed in another coordinates on 
i2(RxR2). 

The minimal lagrangian of E corresponding to the choice (7.21) is of the form 
m̂m = ^min * where 

(7.26) Lmin = y mi*2 + y m 2 y 2 + y (y* ~ *y ) ; 

evidently (fmin)t+1 = Ft, v = x, y, k = 0, 1. 
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