Previous |  Up |  Next

Article

References:
[1] Butlewski A.: Sur un mouvement plan. Ann. Polon. Math. 13 (1963), 139-161. MR 0153936 | Zbl 0118.30503
[2] Kulig C.: On a System of Differential Equations. Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, LXXVII (1963), 37-48. MR 0204763 | Zbl 0267.34029
[3] Ráb M.: The Riccati Differential Equation with Complex-valued coefficients. Czechoslovak Math. J. 20 (1970), 491-503. MR 0268452 | Zbl 0215.14201
[4] Ráb M.: Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients. Journal of Differential Equations 25 (1977), 108-114. MR 0492454
[5] Ráb M.: Asymptotic behaviour of the equation $x" + p(t)x' + q(t)x = 0$ with complex-valued coefficients. Arch. Math. (Brno) 4 (1975), 193-204. MR 0404776
[6] Kalas J.: Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f. Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary) 1979, pp. 431-462. MR 0680606
[7] Kalas J.: On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f. Arch. Math. (Brno) 17 (1981), 11-12. MR 0672484 | Zbl 0475.34028
[8] Kalas J.: On certain asymptotic properties of the solutions of the equation $\dot{z} =f(t, z)$ with a complex-valued function f. Czech. Math. Journal, to appear. MR 0718923
[9] Kalas J.: Asymptotic behaviour of equations $\dot{z} = q(t, z)-p(t) z^2$ and $\ddot{x} = x \varphi (t, \dot{x} x^{-1})$. Arch. Math. (Brno) 17 (1981), 191-206. MR 0672659
Partner of
EuDML logo