Previous |  Up |  Next

Article

References:
[1] G. W. Horndeski D. Lovelock: Scalar-tensor field theories. Tensor, 24 (1972), 79-92. MR 0327251
[2] D. Husemoller: Fibre Bundles. McGraw-Hill, New York, 1966. MR 0229247 | Zbl 0144.44804
[3] Chuu-Lian Terng: Natural vector bundles and natural differential operators. A dissertation, Brandeis University, Massachusetts, 1976.
[4] S. Kobayashi K. Nomizu: Foundations of Differential Geometry. Vol. 1, Interscience, New York, 1963. MR 0152974
[5] D. Krupka: A setting for generally invariant Lagrangian structures in tensor bundles. Bull. Acad. Polon. Sci, Sér. Math. Astronom. Phys., 22 (1974), 967-972. MR 0410793 | Zbl 0305.58002
[6] D. Krupka: A theory of generally invariant Lagrangians for the metric fields. II. Intern. J. Theor. Phys. 15 (1976), 949-959; I., Intern. J. Theor. Phys. 17 (1978), 359-368 MR 0503475
[7] D. Krupka: Elementary theory of differential invariants. Arch. Math. (Brno), 14 (1978), 207-214 MR 0512763 | Zbl 0428.58002
[8] D. Krupka: Finite order liftings in principal fibre bundles. Beiträge zur Algebra und Geometrie (Halle), to appear. MR 0680453 | Zbl 0503.55010
[9] D. Krupka: Lagrangians and topology. Scripta Fac. Sci. Nat. UJEP Brunensis, Physica 3- 4 (1975), 265-270. MR 0442929
[10] D. Krupka A. Trautman: General invariance of Lagrangian structures. Bull. Acad. Polon. Sci, Sér. Math. Astronom. Phys., 22 (1974), 207-211. MR 0345130
[11] A. Nijenhuis: Natural bundles and their general properties. Differential geometry, in honour of K. Yano, Kinokunyia, Tokyo, 1972, 317-334. MR 0380862 | Zbl 0246.53018
[12] H. Rund: Invariant theory of variational problems for geometric objects. Tensor, 18 (1967), 240-257. MR 0217668 | Zbl 0152.39403
[13] S. E. Salvioli: On the theory of geometric objects. J. Diff. Geometry 7 (1972), 257-278. MR 0320922 | Zbl 0276.53013
[14] R. Sulanke P. Wintgen: Differentialgeometrie und Faserbündel. Berlin, 1972. MR 0413153
Partner of
EuDML logo