Previous |  Up |  Next

Article

References:
[1] Alexandroff P. S.: Zur Theorie der topologischen Räume. (Doklady) Acad. Sci. URSS 11 (1936), 55-58. Zbl 0014.13502
[2] Bell M. G.: Not all compact spaces are supercompact. General Topology Appl. 8 (1978), 151-155. MR 0474199
[3] Bell M. G.: Polyadic spaces of arbitrary compactness numbers. Comment. Math. Univ. Carolinae 26 (1985), 353-361. MR 0803933 | Zbl 0587.54039
[4] Douwen E. van, Mill J. van: Supercompact Spaces. Topology and its Applications 13 (1982), 21-32. MR 0637424
[5] Engelking R.: Cartesian products and dyadic spaces. Fund. Math. 57 (1965), 287-304. MR 0196692 | Zbl 0173.50603
[6] Groot J. de: Supercompactness and superextensions. in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. MR 0244955
[7] Mill J. van, Mills C. F.: A nonsupercompact continuous image of a supercompact space. Houston J. Math. 5 (1979), 241-247. MR 0546758
[8] Mills C. F.: Compact topological groups are supercompact. Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978.
[9] Pelczynski A.: Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions. Dissertationes Math. 58, Warszawa 1968. MR 0227751
[10] Rudin M. E.: Lectures on set theoretic topology. Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. MR 0367886
[11] Strok M., Szymanski A.: Compact metric spaces have binary bases. Fund. Math. 89 (1975), 81-91. MR 0383351 | Zbl 0316.54030
Partner of
EuDML logo