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Not all dyadic spaces are supercompact 

MURRAY G. BELL* 

Abstract A space is called dyadic if it is a Hausdorff continuous image of some power of 
the discrete space 2. A space X is called supercompact if it possesses an open sub base S 
such that every open cover of X consisting of members of S has an at most 2 subcover. We 
show that there is an example of a dyadic space which is not supercompact thus answering 
a question of E. van Douwen and J . van Mill. 
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1. Introduction. 
All spaces in this paper will be assumed to be Hausdorff. Dyadic spaces, intro­

duced by Alexandroff [1], are continuous images of 2K for some cardinal K. Super-
compact spaces, introduced by De Groot [6], are spaces X which possess an open 
subbase S such that every cover of X consisting of members of S has a subcover 
of at most 2 members. For our purposes it is more elegant to work with closed 
subbases. A collection of sets $ is linked if every 2 members of S have a non-empty 
intersection. A collection of sets S is binary if every linked subcollection of S has 
a non-empty intersection. So, X is supercompact iff X has a binary closed subbase. 

Supercompact spaces are plentiful. They include all compact metric spaces, 
Strok & Szymanski [11], all compact groups, Mills [8], and all compact ordered 
spaces. Super compactness is preserved by products, so all Cantor cubes 2K and all 
Tychonoff cubes IK are supercompact. Not all compact spaces are supercompact, 
Bell [2], since if the Stone-Cech compactification of a space X is supercompact, 
then X must be pseudocompact. There are even first countable compact spaces 
which are not supercompact. This was shown in van Douwen & van Mill [4] where 
the question of whether all dyadic spaces are supercompact was raised. This ques­
tion also appears in the problem list of Rudin [10]. Van Mill & Mills [7] have an 
example of an at most 2 to 1 irreducible image of a supercompact space that is 
not supercompact. Bell [3] has given an example of a polyadic space that is not 
supercompact. In this paper, we produce a dyadic space that is not supercompact. 
It is of a particularly simple form, i.e. it is gotten from 2K by collapsing a closed 
subset to a point. However, for our argument to work, we require K > UJ$. 

2. Preliminaries. 
The following elementary facts will be used throughout this paper. A subcollec­

tion of a binary collection is again binary. If w : X —• Y is an onto map and S is 
a binary collection of subsets of F , then {TT^^S] : S € 5} is a binary collection of 

*This research was suppor ted by an NSERC grant of Canada. 



776 M.G.Bell 

subsets of X. A collection S of sets is said to be stable if whenever 1Z C 5 , then 
f] 1Z e S. The hull of a collection S of sets is the smallest stable collection which 
contains S. If S is a binary collection, then the hull of S is also binary. So, if X is 
supercompact, then X has a stable binary closed subbase S. We make use of this as 
follows. Let S be a stable closed subbase for a compact space X. Then, whenever 
A is closed in X, V is open in X, and A C V, there exists a finite TZ C S such that 
A C (J 7£ C V. A simplification occurs if A is clopen; we then get that there exists 
a finite 1ZQS such that A = | J 1Z. 

If 5 is a set, then Sc represents the complement of 5 taken in the largest previously 
defined set which contains S as a subset. If a < 7 are 2 ordinals, then (a, 7) denotes 
{P : a < P < 7} . We abbreviate zero-dimensional by 0-dim' 1. 

3 . Quotients. 
Throughout this section X will represent a compact space and H(X) will rep­

resent the collection of all non-empty closed subsets of X. If A is a closed subset 
of X, then X MOD A represents the quotient space of X gotten by collapsing A 
to a point. We will reserve the symbol n henceforth for the associated quotient 
map from X onto KMODA If A C B C H(X), then the notation A | B de­
notes the following statement: for all B e B and for all open sets V of X with 
B C I l " , there exists a finite CCA with B C\JC CV. If A e H(X), then put 
i " = {J?€ H(X) : either A C B or A D B = 0}. 

Theorem 3.1 . (The Quotient Theorem) Let X be compact and let A be a closed 
subset of X. X MOD A is supercompact iff there exists a binary S C A* such that 
S1A\ 

PROOF : Assume that X MOD A is supercompact and that B is a stable binary 
closed subbase for X MOD A. Put S = {7r_1 [B] : b e B}. S is binary since n is onto. 
Clearly, S C A\ Let F e A* and let V be open in X with F CV. If A f) F = 0 
then put U = V fl Ac otherwise put 17'at* V. Then K C II C V. So, 7r[F] C W[U]. 
W[F] is closed since w^M-P]] = F and 7r[L7] is open since Tr"*1 [*"[{/]] = U. Choose 
a finite CQB such that w[F] C\JCC ir[U]. Then, F C LK*"1!^] : -B e C} C V. 
Thus we have shown that 5 | A~. 

Assume that S C A* is binary and that S ] A\ Put 5 = {TT[5] : 5 e S}. B 
consists of closed sets of X MOD A. Let D be closed in X MOD A and let V be 
open in X MOD A with D C V. Then, T r ^ D ] e A* and ^ [ J D ] C T T " 1 ^ ] ; SO we 
can choose a finite CCS with ^ [ D ] C \JC C Tr" 1 ^] . Thus, D C (JM-S] - -? € 
C} C V. So, 5 is a closed subbase for X MOD A. Let {TT[5] : 5 e C C B} be linked. 
Then C must be linked. Choose x e f]C. Then, TT(X) e f l M 5 ] : 5 e C}. Thus 5 
is binary and therefore X MOD A is supercompact. • 

If we put K = u>i and take p ^ <? in 2K, then 2*MOD{p,<j} is an interesting 
space since, by Pelczynski [9], this space is a 0-dim'l dyadic space which is not 
homeomorphic to any retract of 2*. We must mention that the first example of 
such a space was given by Engelking [5]. However, this space is supercompact by 
the next result. 



Not all dyadic spaces are supercompact 777 

Proposition 3.2. If X is supercompact and Q-dim'l and A is a finite subset of Xf 

then X MOD A is supercompact. 

PROOF : By induction, it suffices to prove this for a 2-element set A = {p,q}. 
Let B be a stable binary closed subbase for X. Choose a clopen set D of X such 
that p € D and q $ D. Put S = {B € B : B n A = 0 and either B C D o r 
B C Dc} U {D U B : q £ B € B} U {Dc U B : p € B € B}. S is seen to be binary, 
S C A", and S | A". By the Quotient Theorem, KMODA is supercompact. • 

We are unable to prove Proposition 3.2 without assuming that X is 0-dim'L 
So, we ask: Does there exist a supercompact space X and a subset A of X of 
cardinality 2 such that X MOD A is not supercompact? 

4. T h e example . 
Let K be an infinite cardinal, F C »~c, and A C 2*. We say that A depends on F 

if A = ^ 1 K F [ - 4 ] ] where 7r/? : 2* —• 2 F is the F t h projection map. A basic fact 
about 2* that we will use is that if A is a regular closed subspace of 2*, then there 
is a countable F C K such that A depends on F. 

We need the following result about the cardinal K = u/3. We remark that the 
result is no longer true if K is either u>2 or u>i. 

Theorem 4.1. Put K = ^ and for each a < X < K let Fa\ be a countable subset 
of K. Then there exists a < X < 7 < K such that a £ F A 7 > 7 t F<*\ and FaynF\^n 
(of,7) = 0. 
PROOF : (i) Put 7(0) = 0 and for a < u>2 choose 

7(a) > sup({7(A) : A < a} U [j{Fah :a<b< 7(A) and A < a}). 

Put 7 = sup({7(a) : a < u>2}). Then cf(7) = u>2 and for every a < X < 7 we have 
that 7 £ Fa\. 

(ii) Fix 7 as in (i). Put 7(0) = 0 and for a < u>i choose 7(a) such that 

7 > 7(a) > sup({7(£) :S<a}U [){Fl{6)l fl (j(S), 7 ) : S < a}). 

Now, fix A with sup({7(^) : * < w i » < X < 7- By construction, if a < 6, then 
F7(a)7 VI (7(a), 7) PI Fy(6)7 H (7(6), 7) = "• S i n c e F** i s countable, this means that 
we can choose S < u>\ such that 

Fxy n ({7(*)} u [FT(S)7 n (7(«), 7)]) = 0-

Finally, put a = 7(£)- • 
Put K = u>3 for the remainder of this section. For a < AC, define u><* € 2* by 

tx>a(8) = 0 iff S < a. 

Put W = {«>« : a < K}. TV is a homeomorph of the compact ordinal space a>3 + 1. 
For a < A < K define pa\ € 2* by 

PaA(<*) = 0 i f F 6 < a o r 8 = A 

and put BaX = {/ € 2* : / ( a ) = 1 and /(A) = 0}. Then paA € .BaA, #<*A is a clopen 
subset of 2*, and Wc = U{#aA : a < A < K}. 
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Theorem 4.2. 2K MOD IV is not supercompact. 

PROOF : We will use the Quotient Theorem. Assume that S C W~ satisfies 
S | IV". We will show that S cannot be binary. For brevity, if A C 2*, then put 
A* = cl(int(A)). Since S | W , for each a < X < K, choose finite subcollections 
Vax and Uax of S such that BaX = [)Va\ and Bc

aX = {j1la\> Since paA € HaA, 
choose PaA € Vax such that p a A € P*A. Since wx+\ £ BaXl choose QaA £ %ax 
such that wx+i G Q*A- Since wa € D£A, choose PaA € %ax such that w a € P*A. 
Let PaA,Q*A. and RaX depend on the countable subsets CaA,DaA, and Eax of K 
respectively. For a < X < K, put F a A = OaA U DaA U DaA. Invoke Theorem 4.1 and 
choose a < X < 7 < K such that a <£ PA7,7 $ F a A , and Pa7 n PA7 n (a, 7) = 0. 

C laim. {Pa75QA7 ,PaA} is not binary. 
PROOF of Claim: Pa7 n QA 7 n PaA C Ha7 n Bc

Xy n D* A = 0. Since w 7 + 1 € 
Q A 7 , Q A 7 n W 7-- 0 and so W C QA7. Since wa 6 Ra\,Ra\ H IV ?- 0 and so 
IV C I2aA. Hence, Q A 7 nP a A 7- 0. Pa7nPaA ^ 0 sincepay € P«7nHaA. The reason 
that p a 7 £ Rax is that wa e Rax^R

a\ depends on KaA and pa7 | Eax = wa \ EaA. 
For this last fact we need that 7 $ EaA. If we define / 6 2K by f(S) = 1 iff S = a 
or 8 > 7 or £ € C a 7 n (a, 7) then / 6 Pa7 n Q A T . The reason that / € Pa7 is that 
Pa7 € P*7, P*7 depends on Ca7 and / | Ca7 = pay | Oa7. The reason that / G QA7 

is that tu7+i € QA 7 , Q\y depends on DA7 and / | DA7 = w7+1 | DA7. For this last 
fact, we need that a $ DA7 and that Ca7 n DA7 n (0^,7) = 0. • 

5. Conclusion. 
An alternate description of the space 2K MOD IV is that it is the Stone space of 

the boolean algebra generated by {PaA : a < X < K}. 
If we trace Theorem 4.2 back to Theorem 3.1, then we see that the nature of 

our proof was as follows: We showed that if S is a family of closed sets and if / is 
a function which associates, to each clopen set H, a finite subcollection f(B) of S 
such that B = (J / ( D ) , then, we could find 3 clopen sets A, D,C and 3 elements 
R € / ( A ) , 5 G / (D ) , T e f(C) such that {P, 5, T} is linked and A n B n C = 0. 
This nature allows one to easily extend Theorem 4.2 to the stronger statement that 
2K MOD IV cannot be embedded as a neighbourhood retract of any supercompact 
space. We mention this because an important unsolved problem in supercompact-
ness today is the question of van Douwen and van Mill [4] of whether supercom­
pact ness is preserved by retractions. 

We would like to mention our first failed attempt in solving the problem of this 
paper. If, for a < K we define xa £ 2K by xa(S) = 1 iff S = a and put F = {xa : 
<* £ «}> then F is a homeomorph of the Alexandroff one-point compactification of 
the discrete space K; however, 2K MOD F can be shown to be supercompact. 
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