Previous |  Up |  Next

Article

References:
[1] L. Block: Periods of periodic points of maps of the circle which have a fixed point. Proc. Amer. Math. Soc. 82 (1981), no. 3, pp. 481-486. MR 0612745 | Zbl 0464.54046
[2] L. Block J. Guckenheimer M. Misiurewicz L. S. Young: Periodic points and topological entropy of one-dimensional maps. in book: Global theory of dynamical systems, (Proc. Internal Conf., Northwestern Univ., Evanston, III., 1979, p. 18-34. Lecture Notes in Math. 812, Springer, Berlin 1980 MR 0591173
[3] R. L. Devaney: An Introduction to Chaotic Dynamical Systems. Second Edition, Addison-Wesley, New York 1989. MR 1046376 | Zbl 0695.58002
[4] R. Ito: Rotation sets are closed. Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, pp. 107-111. MR 0591976 | Zbl 0484.58027
[5] K. Janková J. Smítal: Characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), no. 2, pp. 283-292. MR 0854575
[6] M. Kuchta J. Smítal: Two point scrambled set implies chaos. in book: European Conference on Iteration Theory, (ECIT 87), World Sci. Publishing Co., Singapore. MR 1085314
[7] T. Y. Li J. A. Yorke: Period three implies chaos. Amer. Math. Monthly 82 (1975), no. 10, pp. 985-992. MR 0385028 | Zbl 0351.92021
[8] M. Misiurewicz: Periodic points of maps of degree one of a circle. Ergod. Th. & Dynam. Sys. 2 (1982), no. 2, pp. 221-227. MR 0693977 | Zbl 0508.58038
[9] M. Misiurewicz: Twist sets for maps of the circle. Ergod. Th. & Dynam. Sys. 4 (1984), no. 3, pp. 391-404. MR 0776876 | Zbl 0573.58019
[10] J. Smítal: Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), no. 1, pp. 269-282. MR 0849479
[11] A. N. Šarkovskii: On cycles and the structure of a continuous mapping. Ukrain. Mat. Ž. 17 (in Russian) (1965), pp. 104-111. MR 0186757
Partner of
EuDML logo