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Characterization of chaos 
for continuous maps of the circle 

MILAN KUCHTA 

Abstract. Recently Li & Yorke introduced the notion of chaos for continuous maps . The 
recent papers by Jankova, Smi't.al and Kuchta, Smital give a characterization of chaos 
for continuous maps of compact real interval into itself. In the present paper we give a 
characterization of chaos for continuous maps of the circle. The class of continuous maps 
of the circle extends the class of continuous maps of the interval, if we consider dynamica l 
systems generated by the maps from these classes. 

Keywords: Chaos, circle, iteration, topological dynamics 

Classification: 54H20, 26A18 

1 . INTRODUCTION 

Let M denote a compact real interval or a circle and C(M, M) denote the set of 
continuous maps of M into itself. Let / € C(M, M); 8 > 0 and A C M be a set 
such that for any ar, y £ A; x ^ y and any periodic point p of / : 

(1) lim8up||r(x),/"(v)||>* 
n—+oo 

(2) liminf||r(z),r(y)||=0 
n—*oo 

(3) l i m s u p | | / n ( z ) , / n ( p ) | | > * 
n—+-oo 

Here fn is the n-th iterate of / and ||x, y|| is the distance of points xy y. Then A is 
called a scrambled set of / , or (when 8 > 0) a ^-scrambled set. The function / is 
chaotic in the sense of Li & Yorke [7] if / has an uncountable scrambled set. But, 
indeed, there are some other definitions of chaos. This paper gives a characterization 
of chaos for the maps from C(M, M). Before we state the results, we recall some 
terminology. 

Let / G C(M,M). We say that an interval J C M is an /-periodic interval 
of period k € N if / * ( / ) = J and /'(J) PI f>(J) = 0 for t ^ j ; ij = 1 . . .*. 
Interval J may be degenerated to a point and be called a periodic point. Let 
Per(f) denote the set of all periodic points of / and P(f) denote the set of all 
periods of periodic points of / . Two points u>v € M are /-separable if there are 
disjoint periodic closed intervals Ju,JvCM (may be degenerated to a point) with 
u € Ju; v € Jv. Otherwise u,v are /-nonseparable. The set of all limit points of a 
trajectory {f(x)}tLi -s called the attractor of / and x, and is denoted by u(f,x). 

Now we give main results of this paper. 
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Theorem A. Let f € C(M,M) and Per(f) ^ 0. The following conditions are 
equivalent: 

(a) / is chaotic in the sense of Li & Yorke; 
(b) / has an infinite attractor containing two f-nonseparable points; 
(c) for some 6 > 0, f has a nonempty perfect 6-scrambled set; 
(d) / has a trajectory which is not approximated by cycles; 
(e) / is topologically conjugated to a function, which has a scrambled set of 

positive Lebesgue measure; 
({) for some 6 > 0, f has a nonempty 6-scrambled set; 
(g) / has a scrambled set containing two points. 

Theorem B . Let f € C(M,M) and Per(f) = 0. Then f is topologically semi-
conjugated to a rotation of a circle and f has no two-point scrambled set. 

Remark 1.1. Theorem A was proved in papers by Jankova, Smftal [5] and Kuchta, 
Smftal [6] for maps of compact real interval into itself. 

2.MAPS WITH PERIODIC POINTS 

Let N, Z, R denote the sets of natural, integer, real numbers respectively and 
5 = R\Z denote the circle. We shall denote by n : R —> 5 the natural projection. 

Let xi,x2 € 5. We define: ||ori9a;2|| = min{|yi - 2/2I; £i = n(y,)} 
Let F € C(R, R) and / € (7(5,5). Then F is a lifting of / if / o n = n o F. 
Let F be a lifting of / . Then there is kf € Z such that for any x € R,z € Z: 

F(x + z) = F(x) + zkf. So we can define the degree of / : deg(f) = kf 
Let / € C(S, S), deg(f) = 1 and F be a lifting of /.Then: 

p(F, x) = limsup ~(Fn(x) - x) for x € R 
n—*oo n 

p(F)={p(F,x);x€R}. 

The class C(S, S) can be decomposed into following disjoint sets (see [1], [2], [8]): 
Wo = {/€C(5,5);Per(/) = 0} 
Wi = {/ € C(S, S); P(fn) = {1} for some n € N} 
W2 = {/ € C(S,S)',P(fn) = {2*;t = 0,1,2,...} for some n € N} 
Wz = {/ 6 C(S,S)',P(fn) = N for some n € N} 

Remark 2.1. Let / € C(S,S) and n € N. It is easy to see that / has some 
property from the properties (a) , . . . ,(g) from Theorem A if and only if fn has the 
same property. 

Lemma 2.2. Let f € C(S,S) and 1,3 € P(f). The following conditions hold: 
(i) for some 6 > 0, / has a nonempty perfect 6-scrambled set; 

(ii) / has an infinite attractor containing two f-nonseparable points. 

PROOF : Without any loss of generality we may assume that: 
0 < xj < x2 < x3 < 1 and /(II(0)) = 11(0); /(n(x,)) = H(x2); /(IT(x2)) = n(xs); 
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/ (n (x 3 ) ) = II(xi). ( {n(x i ) ,n(x 2 ) ,n(x 3 ) } is three cycle and n(0) = 11(1) is fixed 
point.) 

It is easy to see, that for any given function / there exists a code, consisting from 
four numbers (0 or 1), such that Table 1 gives us an information about properties 
of / . 

Then according to Table 2 we obtain from this code some intervals h>h and 
some m € N, such that for all n € N and s» € {0; 1} there exists a closed interval 
Iai...9n±* such that: *n + l 

-".,.....+, C /.,....„ and / m (П(/ . l . . . .„ + 1 ) ) = П(/...... n + 1) 

Let I, = П h for every s = {si}^Lx $i € {0; 1}. 

Let A = {Ia; I9 consist of one point}. 
There exists such B C A that U(B) is nonempty perfect 8-scrambled set (6 > 0) 

for function fm (see [5]). There exists x € S such that n(A) C u>(/m,x) (for more 
details see [3], Symbolic dynamic, pp.39-43). For any y € 11(1?) and J C S closed 

k 
/m-periodic interval of period k € N it holds: if y € J then w(fm,x) C U /m i(J) 

(y is not periodic). Because for any two points of 11(B) (2) holds for function / m we 
obtain 11(B) C J and this proves that any two points of 11(B) are /m-nonseparable. 
Now it suffices to consider Remark 2.1 and we are done. • 

Table 1 

Code: Property: * = There exists an interval 

0 . . . * Ao C [0;xi]; /(П(Л0)) = П([0;x2]) 

1 . . . * Ai C [0;xi]; /(П(Лi)) = П([x2;l]) 

. 0 . . * B0 C Џx;x2]; /(П(Ј?o)) = П([x2;x3]) 

. 1 . . * Bi C[xt;x2]; /(П(Бi)) = П([xз;l + x2]) 

. . 0 . * Co C [x2;x3]; /(П(Co)) = П([x3;l + xi]) 

. . 1. * CiC [x2;x3]; /(П(Ci)) = П([xi;x3]) 

. . . 0 * DoC [x3; l]î /(П(.D0)) = П([xi;l]) 

. . . 1 *£>iC[x3;l]; /(П(Di)) = П([0;xi]) 

Table 2 

Code: Eesult: 

0 1 . . m = 1, /o = [0;xj], h = [xi;x2], 
. 0 1 . m = 2, Һ = [*i;я2], Һ =[*2ÎЯзL 
0 0 0 . m = 3, Io = [0;xi], Һ = [2lî22]» 
. . 00 m = 2, Һ =[Я2Î*3]» Ii = [x3;i], 
1 . 0 1 m = 2, h = þгî^зjł li = [x3;i], 
1 1 1 . m = 3, h = [21; £2], Һ = [22; 23], 
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Lemma 2.3. Let f € C(S, 5) , / € Wx U W2 and f have a fixed point. Then there 
exists F lifting of f and a closed bounded interval I C R greater than one, such that 

F\ieC(i,i). 
PROOF : We know that |deg(/) | < 1 (see [2]), so we can divide our problem to 
the three cases. 

* Let deg( f) = 0. In this case F is periodic and we are easily done. 
* Let deg( f) = 1. There is F lifting of / such that F has a fixed point. It 

follows that 0 € p(F). Since / € W\ U W2 the set p(F) must have only one 
point (see [4]). Then p(F) = {0}. We claim there exists a point a € R such 
that: 

if x > a then F(x) > a. 

If it is not true, then there exists S > 0 such that for every x G R there is 
some y > x -f S such that F(y) = x. Now we can easily obtain that there is 
z € R such that p(F, z) < —S which is impossible. In a similar way we can 
find b € R such that: 

if x < b then F(x) < b. 

Since the properties of a,b are not changed by addition of an integer we can 
now define J = [a; b) where b — a > 1. 

* Let deg(f) = —1. Let F be a lifting of / . We know that F has a fixed point, 
deg(f2) = 1 and F2 is the lifting of f2. Let J be an interval for function F2 

which contains some fixed point of F and F2(J) C J as we found it in the 
previous case. Now we can define I = J U F(J). m 

Lemma 2.4. Let f € C(S, 5), F be a lifting of f and I C R be the closed bounded 
interval greater than one such that F\ I € C(I,I). Then the following conditions 
hold: 

(i) / has an infinite attractor containing two f-nonseparable points if and only 
if F\I has an infinite attractor containing two F \ I-nonseparable points; 

(ii) if f has a nonempty S-scrambled set then F\I has a nonempty S-scrambled 
set; 

(iii) if f has two-point scrambled set then F\I has two-point scrambled set; 
(iv) if for some SF > 0 function F\I has a nonempty perfect Sp-scrambled set 

then there is Sf > 0 such that f has a nonempty perfect Sf-scrambled set. 

PROOF : It is easy to see: 

(4) u(f, n(x)) = Il(u>(F, x)) for all x 6 R 

(5) P e r ( / ) = n ( P e r ( F \ I ) ) 

(6) P(f) = P(F\I) 

(7) \deg(f)\ < 1 

(i) Let us check the following possibilities: 
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Let f €Wn. This is impossible (see (6)). 
Let f G W*. Then u>(F, x) is finite for all x € R (see [11]) and also u(f, y) 

is finite for all y € S (see (4)). 
Let / € W%. In this case functions f,F\I have infinite attractors containing 

two nonseparable points (see Remark 2.1, Lemma 2.2 and [5]). 
Thus the only interesting case is f £ Wo. 

Let x € I and a, b € u>(F, x), a£b. 

If a, b are F \ /-separable then either a, b are periodic points and (see (5)) 
n(a), 11(b) are also periodic and they are /-separable (if n(a) = U(b) then 
they are not two /-nonseparable points), or there exist a closed periodic 
interval J C I and n € N such that a € J, b € Fn(J) and J n Fn(J) = 0. 
But n(J) is also periodic and U(J) 0 / n ( n ( J ) ) = 0 and so we have that 
11(a), U(b) are /-separable. 

If a, b are F-nonseparable then there is an interval J C I such that a, b € J 
and F*(J) fl F>(J) = 0 for all » ^ j (see [10]). Then n(a), n(6) G U(J) and 
/'(II(J)) 0 />(J) = 0 for all i ^ j . It follows that n(a) ?- n(6) and they are 
/-nonseparable. 

Now it suffices to consider (4) to finish the proof of (i). 
(ii) Let x € I and {II(x)} be a 8-scrambled set for / . Then (5) implies that {x} 

is a 8-scrambled set for F\I. 
(iii) Let x,y e I and {U(x), II(y)} be a scrambled set for function / . Then there is 

an increasing sequence {n,}?^, m 6 N such that lim \Fni(x) —Fni(y)\ = k 
»—->oo 

for some k € Z (see (2)). 
Let us discuss the three cases (see (7)). 
Let deom = 0. Then lim |Fn*+1(ar) - Fn<+%(y)\ = 0 and now it is easy 

t—>oo 

to see that {x; y} is the scrambled set for F\I. 
Let deg(f) = 1. Then because I is greater than one there is m 6 N and 

&i ,k2 € Z such that: 

F^x + k^F^y + k^el and 
lim |Fn<(* + h) - Fni(y + * 2 ) | = 0. 

t—*-oo 

Then {Fm(x -f *i), Fm(y + ^2)} is the scrambled set for function F\I. 
Let dea(f) = - 1 . Then deg(f2) = 1 and {U(x), IL(y)} is the scrambled set 

for f2 and F 2 is the lifting of f2 and we are in the previous case. Now it 
suffices to consider Remark 2.1 to finish the proof of (iii). 

(iv) Let D C I be a nonempty perfect ^-scrambled set for function F\I (Sp > 0). 
Because F \ / is continuous in the compact interval I we can show that: 

* there exists S\ > 0 such that for any x, y € D, x ^ y there is a limit point of 
the sequence {||Fn(x),Fn(|/)||}SL1 in the open interval (Si; 1 - £1); 

* there exists 62 > 0 such that for any x € D, p € Per(F \ I) there is a limit 
point of {\\Fn(x), Fn(p)||}^L1 in the open interval (k + S2; k + 1 - S2) for 
some k € Z. 



388 M.Kuchta 

Now we can take 8/ = min{8i; £2} and n (D ) is the nonempty perfect 8/-
scrambled set for / . • 

PROOF of Theorem A: We can assume that / 6 C(S, S) (see Remark 1.1). 
If / € W\ U W2 then Theorem A follows from Remarks 1.1, 2.1 and Lemmas 2.3, 

2.4. 
If / € W3 then Theorem A follows from Remark 2.1 and Lemma 2.2. • 

Corol lary 2.5 . The set W% contains only functions which have only trajectories 
which are convergent to periodic orbits. 

The set W2 can be decomposed into two disjoint subsets: 
Chaotic functions and functions that have only trajectories approximated by cycles. 

The set W3 contains only chaotic functions. 

3 .MAPS WITHOUT PERIODIC POINTS 

Let / € C(S, S), deg(f) = 1 and F be a lifting of / . We shall call a set A C S a 
m a t set of/ (minimal almost twist) if A is non-empty, closed, invariant (f(A) = A), 
minimal (for every a: € A; v(f,x) = A), almost twist (F\U"1(A) is nondecreasing) 
and there is p(A) € R such that p(F,y) = p(A) for every y 6 n~"1(A). 

Remark 3.1. It is easy to see that if / 6 C(M,M) and Per(f) = 0 then 
/ € C ( S , S ) and deg(/) = l. 

L e m m a 3.2. (Misiurewicz [9]). Let f € C(S,S), deg(f) = 1 and F be a lifting of 
f. Then for every a € p(F) there exists A C S a mat set of f such that p(A) = a. 

Lemma 3.3. (Misiurewicz [9]). Let f € C(S,S), deg(f) = 1 and A be a mat set 
off. Then: 
if p(A) is rational then A is a finite set; 
if p(A) is irrational then: 

(i) either A = S or A is homeomorphic to the Cantor set; 
(») if x € A is an endpoint of an interval disjoint from A, then there exists a 

unique y € A with f(y) = x; this y is also an endpoint of an interval disjoint 
from A; 

(iii) if x € A, then either there is a unique y € A with f(y) = x} or there are 
two such points; in this case they are the endpoints of some interval disjoint 
from A. 

Corollary 3.4. Let f € C(S,S), deg(f) = 1, F be a lifting of f and A C S be a 
mat set of f. Then for all x,y € IT"1 (A) it holds: 

(i) if (*, y) n n-H-A) = 0 then (F(x), F(y)) C\ Il^A) == 0 
(ii)[F(x),F(y)]cF([x,y]) 

(iii) if A~ S then F is increasing 

Lemma 3.5. Let f € C(S> S), deg(f) = 1, F be a lifting of f and Ac S be a mat 
set of f homeomorphic to the Cantor set Let, for all x,y € II~"1(A), hold: 

if (x, y) fl W\A) = 0, then F([x, y}) = [F(x), F(y)}. 
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Then there is a semi-homeomorphism h £ C(S, S) such that: 

(i) h(x) = h(y) if and only if there is an interval J C S such that int(J)f\A = 0 
and x,y £ J; 

(ii) h o f = g o h where g £ C(S, S) such that deg(g) = 1 and S is the mat set of 
function g. 

PROOF : Function h is a well known function of Cantor's type such that h(A) = S 
and deg(h) = 1. • 

Lemma 3.6. Let f £ C(S,S), deg(f) = 1 and S be a mat set of f. Then f is 
topologically conjugated to the irrational rotation of circle. 

PROOF : Let F be a lifting of / . Then p(F) = {a} where a is irrational (see 
Lemma 3.3) and there is x £ R such that F(x) = x -f a. We can assume that 
F(k) = k F a for all k £ Z. Now we define: 

H(Fn(k)) = na-r k for all n, k £ Z (F is homeomorphism). 

Let nx,n2,z,r £Z and Fni(z) > Fn*(r) 
then (deg(f) = 1) Fn--n*(0) > r - z 
then (F is increasing) jF*(»i-»a)(o) > fc(r _ 2 ) 
then (k goes to infinity) />(ir,0)(n1 — n2) > r — z 
then (p(F, 0) = a is irrational) ani + z > an2 F r. 

So we have that function H is increasing on the set D C R which is dense in 
R (S is the mat set) and H(D) is dense in R (a is irrational). Function H can 
be extended to a function from C(R, R) and so we have H o F = G o H where 
G(x) = x + a for x £ R. Here H, G are the liftings of fc, gr respectively, where & is a 
homeomorphism, g is irrational rotation of circle and ho f =: goh. • 

Lemma 3.7. Let f £ Wo, F be a lifting of f and A C S be a mat set of f. Then 
for all x,y£ W^A) it holds: 

If ( x , y ) n r 1 ( A ) = 0 then F([x,y]) = [F(x),F(y)} 

PROOF : Let /* £ C(S, S) be a function such that if F* is a lifting of /» then for 
all a;,y € II"~1(.A) it holds: 

(i) F.(x) = F(x); 
(ii) if (*, y) n li^(A) = 0 then Fm([x, y]) = [F.(x), F«(y)}. 

Since p(A) is irrational ( / £ W0), from Lemmas 3.3, 3.5, 3.6 we obtain that for 
every closed intervals J, K C S such that, 

mt(J)nA = 0 and mt(K)nA^0 

there is such n £ N that J C f?(K) (A is the mat set of /* ) . 
If there is a closed interval J C S such that: 

m<(J)nA = 0 and mt(/( J)) n A ̂  0, 
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then there is n € N such that J C / n ( / ( J ) ) and from here we obtain that 
J C / n + 1 ( « 0 which is impossible because Per(f) = 0. 

So we have int(f(J)) H A = 0. • 

PROOF of Theorem B: Prom Lemmas 3.2, 3.5, 3.6, 3.7 it follows that / is topolog­
ical^ semi-conjugated to the irrational rotation of the circle. Let A be a mat set of 
/ . The semihomeorphism h has the properties from Lemma 3.5 and h o / = g o h 
where g is the rotation of the circle. Now we assume that 

liminf | | / n (x ) , / n (y ) | | = 0 for some x,y € S. 
f l—*oo 

So we have liminf ||/.(/n(x)),ft(/n(y))ll = «. Uminf || f f"(fc(i)), f f"(%))|| = 0 
n—*oo n—->oo 

and because g is the rotation of the circle we have h(x) = h(y). FVom here we 
obtain that there is an interval J C S such that x,y £ J and int(J) f) A = 0. 
FVom Lemma 3.7 we obtain that int(Jn) 0-4 = 0 (Jn = fn(J)) for every n € N. 
Because fn(J) f) fm(J) = 0 for n ^ m (Per(f) = 0) we have: 

l imsup | | / n (x ) , / n (y ) | |=0 . 
n—>oo 

Now we are completely done. • 
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