Previous |  Up |  Next

Article

References:
[1] Dafermos C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982), 397-408. MR 0653464 | Zbl 0489.73124
[2] Day W. A.: Steady forced vibrations in coupled thermoelasticity. Arch. Rational Mech. Anal. 93 (1986), 323-334. MR 0829832 | Zbl 0597.73008
[3] DiPerna R. J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 27-70. MR 0684413 | Zbl 0519.35054
[4] Greenberg J. M., MacCamy R. C., Mizel V. J.: On the existence, uniqueness and stability of solutions of the equation $\rho\chi_{tt} = E(\chi_x)\chi_{xx} + \lambda \chi_{xx}$. J. Math. Mech. 17 (1968), 707-728. MR 0225026
[5] Kato T.: Locally coercive nonlinear equations, with applications to some periodic solutions. Duke Math. J. 51 (1984), 923-936. MR 0771388 | Zbl 0571.47051
[6] Klainerman S.: Global existence for nonlinear wave equation. Comm. Pure Appl. Math. 33 (1980), 43-101. MR 0544044
[7] Matsumura A.: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation. Publ. Res. Inst. Math. Soc. 13 (1977), 349-379. MR 0470507 | Zbl 0371.35030
[8] Racke R.: Initial boundary value problems in one-dimensional non-linear thermoelasticity. Math. Meth. Appl. Sci. 10 (1988), 517-529. MR 0965419
[9] Rothe E. H.: Introduction to various aspects of degree theory in Banach spaces. Providence AMS, 1986. MR 0852987 | Zbl 0597.47040
[10] Shibata Y.: On the global existence of classical solutions of mixed problem for some second order nonlinear hyperbolic operators with dissipative term in the interior domain. Funkcialaj Ekvacioj 25 (1982), 303-345. MR 0707564 | Zbl 0524.35070
[11] Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 76 (1981), 97-134. MR 0629700 | Zbl 0481.73009
[12] Zheng S.: Initial boundary value problems for quasilinear hyperbolic-parabolic coupled systems in higher dimensional spaces. Chinese Ann. of Math. 4B(4) (1983), 443-462. MR 0741742 | Zbl 0509.35056
[13] Zheng S.: Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled system. Scienta Sinka, Ser. A 27 (1984), 1274-1286. MR 0794293
[14] Zheng S., Shen W.: Global solutions to the Cauchy problem of quasilinear hyperbolic-parabolic coupled system. Scienta Sinica, Ser. A 10 (1987), 1133-1149. MR 0942420
Partner of
EuDML logo