Previous |  Up |  Next

Article

References:
[1] P. Hartman: On differential equations and the function $J^2_\mu + Y^2_\mu$. Amer. J. Math 83 (1961), 154-188. MR 0123039 | Zbl 0096.27001
[2] P. Hartman: On differential equations, Volterra equations and the functions $J^2_\mu + Y^2_\mu$. Amer. J. Math 95 (1973), 552-593. MR 0333308
[3] L. Lorch D. J. Neuman: On the composition of completely monotonic functions and completely monotonic sequences and related questions. J. London Math. Soc. (2), 28 (1983), 31-45. MR 0703462
[4] L. Lorch P. Szego: Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1964), 91-96. MR 0158106
[5] L. Lorch P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73. MR 0147695
[6] L. Lorch M. E. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions, III. Canad. J. Math. 22 (1970), 1238-1265. MR 0274845
[7] L. Lorch M. E. Muldoon P. Szego: Higher monotonicity properties of certain Sturm-Liouville functions, IV. Canad. J. Math. 24 (1972), 349-368. MR 0298113
[8] M. E. Muldoon: Higher monotonicity properties of certain Sturm-Liouville functions. Proceedings of the Royal Society of Edinburgh 77A (1977), 23-37. MR 0445033 | Zbl 0361.34027
[9] J. Vosmanský: Monotonic properties of zeros and extremants of the differential equation $y" + q(t)y = 0$. Arch. Match. (Brno) 6 (1970), 37-74. MR 0296420
[10] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$. Arch. Math. (Brno) 10 (1974), 87-102. MR 0399578
[11] D. V. Widder: The Laplace Transform. Princeton Univ. Press 1941. MR 0005923 | Zbl 0063.08245
[12] Z. Došlá M. Háčik M. E. Muldoon: Further higher monotonicity properties of Sturm-Liouville functions. to appear. MR 1242631
Partner of
EuDML logo