Previous |  Up |  Next

Article

References:
[1] M. E. Adams V. Koubek J. Sichler: Homomorphisms and endomorphisms of distributive lattices. Houston J. Math. 11 (1985), 129-146. MR 0792189
[2] M. E. Adams J. Sichler: Endomorphism monoids of distributive double p-algebras. Glasgow Math. J. 20 (1979), 81-86. MR 0523792
[3] R. Beazer: The determination congruence on double p-algebras. Alg. Universalis 6 (1976), 121-129. MR 0419319 | Zbl 0353.06002
[4] B. A. Davey: Subdirectly irreducible distributive double p-algebras. Alg. Universalis 8 (1978), 73-88. MR 0450160 | Zbl 0381.06019
[5] B. A. Davey D. Duffus: Exponentiation and duality, Ordered Sets. NATO Advanced Study Institutes Series 83, D. Reidel Publishing Company, Dordrecht, Holland, 1982. MR 0661291
[6] P. Goralčík V. Koubek J. Sichler: Universal varieties of $(0,1)$-lattices. to appear in Canad. Math. J. MR 1062740
[7] G. Grätzer: General Lattice Theory. Academic Press, New York, San Francisco, 1978. MR 0509213
[8] B. Jónsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121. MR 0237402
[9] V. Koubek: Infinite image homomorphisms of distributive bounded lattices. in proc. Colloquia Math. Soc. János Bolayi, 43. Lectures in Universal Algebra, Szeged 1983, North Holland 1985. MR 0860268
[10] V. Koubek J. Sichler: Universal varieties of distributive double $p$-algebras. Glasgow Math. J. 20 (1985), 121-131. MR 0798738
[11] V. Koubek J. Sichler: Categorical universality of regular double $p$-algebras. to appear in Glasgow Math. J. MR 1073673
[12] V. Koubek J. Sichler: Universal finitely generated varieties of distributive double p-algebras.
[13] H. A. Priestley: Representation of distributive lattices by means of order Stone spaces. Bull. London Math. Soc. 2 (1970), 186-190. MR 0265242
[14] H. A. Priestley: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (1972), 507-530. MR 0300949 | Zbl 0323.06011
[15] H. A. Priestley: The construction of spaces dual to pseudocomplemented distributive lattices. Quart. J. Math. Oxford 26 (1975), 215-228. MR 0392731 | Zbl 0323.06013
[16] H. A. Priestley: Ordered sets and duality for distributive lattices. Ann Discrete Math. 23 (1984), 36-90. MR 0779844 | Zbl 0557.06007
[17] A. Pultr V. Trnková: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. MR 0563525
Partner of
EuDML logo