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Finite-to-flnite universal varieties of distributive 
double p-algebras 

V.KOUBEK 

Dedicated to the memory of ZdenSk Frolik 

Abstract. A concrete category K is called finite-to-finite universal if there exists a full 
embedding from the category of graphs in K preserving finiteness. It is shown that a 
variety V of distributive double p-algebras is finite-to-finite universal if and only if every 

finite monoid M is isomorphic to an endomorphism monoid of an finite algebra in V and 

this is equivalent with the existence of special finite algebras in V. As a consequence we 

obtain that a variety V of distributive double p-algebras is finite-to-finite universal just 

when V contains a finite-to-finite universal, finitely generated subvariety. 

Keywords: a distributive double p-algebra, a finite-to-finite universal category, a finite 
monoid universal category, a variety. 

Classification: 18B10, 06D15, 20M30 

Introduction. 
An algebra (L; V, A,* ,+ , 0,1) of signature (2,2,1,1,0,0) is a distributive double 

p-algebra (shortly dp-algebra) provided (L; V, A, 0,1) is a distributive bounded lat­
tice and * is a unary operation of pseudocomplementation (i.e. x < a* if and only 
if x A a = 0), + is a unary operation of dual pseudocomplementation (i.e. x > a+ 

if and only if x V a = 1). 
A concrete category K is representative for the category G of graphs and compat­

ible mappings, or shortly universal, if there is a full embedding functor F: G —• K. 
If, moreover, F takes the finite graphs to finitely underlied K-objects then K is 
termed Bmte-to-Bnite universal. As explained in [17], the term "universal" is due 
to the fact that besides graphs, all other concrete categories can be represented as 
full subcategories in a universal category (if the set axiom (M) holds). For example 
every monoid (i.e. one-object category) can be represented as the endomorphism 
monoid End(A) of a suitable representing K-object A (i.e. as a full one-object 
subcategory of K). If a category enjoys this weaker property then we call it a 
category representative for monoids, or shortly monoid universal. In this paper we 
shall be interested in another property: A concrete category K is said to be Snite 
monoid universal if every finite monoid M can be represented as the endomorphism 
monoid of a suitable K-object A with a finite underlying set. Thus, any finite-to-
finite universal category is finite monoid universal (because graphs are finite monoid 
universal, see [IT]), while obviously the converse is false. 
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The investigation of dp-algebras started in [2] where it was proved that the variety 
of all dp-algebras is finite monoid universal. In [10] it was shown that there exists 
a finitely generated variety of dp-algebras which is finite-to-finite universal. This 
result was strengthened in [12] where aU universal finitely generated varieties of 
dp—algebras were characterized. The aim of this paper is to characterize finite-to-
finite universal varieties of dp-algebras. We show that for varieties of dp-algebras 
the notions of finite-to-finite universality and finite monoid universality coincide. 
On the other hand we show that there exists a finitely generated universal variety 
of dp-algebras which is not finite-to-finite universal. 

1. Preliminaries and results. 
The proofs make extensive use of the topological duality introduced by H.A. Pries­

tley [13]. A basic outUne follows; for further information, see the survey papers 
B.A. Davey and D. Duffus [5] or H.A. Priestley [13]. A triple (X,<,r) is called a 
Priestley space if X is a set, < is an ordering on X, r is a compact topology on 
X such that for every pair re, y of elements of X with x -j£ y there exists a clopen 
decreasing set U C X with y € (7, x $ U. Clopen decreasing sets in a Priest­
ley space form a distributive (0, l)-lattice and the inverse image map /"* of any 
continuous and order preserving mapping is a (0, l)-homomorphism of the corre­
sponding lattices. This gives rise to a contravariant functor D from the category of 
aU Priestley spaces and continuous, order preserving mappings into the category of 
aU distributive (0, l)-lattices and (0, l)-homomorphisms. 

Conversely, for a distributive (0, l)-lattice L the triple P(L) = (F(L), <, r) forms 
a Priestley space where F(L) is the set of all prime filters, ̂  is the reversed inclusion 
and the topology r is given by an open subbasis {{x 6 F(L); a $ x}\ a € L}. For 
a (0, l)-homomorphi8m / denote by P(f) the inverse image map, then P(f) is 
continuous, order preserving mapping between the corresponding Priestley spaces. 

Theorem 1.1(13,14); Tke composite functors P o D and D o P are naturally 
equivalent to ike identity functor of tkeir domains. 

For a finite distributive lattice Ly P(L) can be alternatively defined as a poset 
of aU join irreducible elements with the discrete topology. This fact is used for 
investigation of finite distributive lattices. 

For a subset U of a Priestley space X denote by (U] the smallest decreasing subset 
of X containing (7, [U) the smallest increasing subset of X containing 27, Mtn(27) 
the set of aU minimal elements in ((/], Max(U) the set of all maximal elements 
in [[/), Ext(U) = Max(U) U Mm(l7). For an element x we shall write («], [x), 
Min(x\ Max(x), Exi(x) instead of ({a}], [{a?}), Min({x})t Max({x})t Ext({x}). 
Further denote by Mid(X) == X \ Ext(X). For a finite distributive lattice L denote 
by Max(L) the set of aU maximal join irreducible elements of L, Min(L) the set 
of all minimal join irreducible elements of L, Ext(L) = Min(L) U Max(L), and 
Mid(L) the set of all join irreducible elements of L which do not belong to Ext(L). 
The following result" describes the restriction of Priestley duality to the variety of 
dp-algebras: 

Theorem 1.2[15] or [4]: For a Priestley space X, DX is a dp-algebra if and only 
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*/ [A) is clopen for every clopen decreasing set AC X, (A] is clopen for every clopen 
increasing set AC X. 

For a continuous order preserving mapping f: X —• X' between duals of dp-
algebras, Df is a homomorphism of dp-algebras if and only if 
f(Min(x)) = Min(f(x)), f(Max(x)) = Max(f(x)) for every x € X. 

A Priestley space X such that DX is a dp-algebra is called a dp-space, an order 
preserving continuous mapping / between dp-spaces X and X' is called a dp-map 
if Df is a homomorphism of dp-algebras. For a variety V of dp-algebras denote by 

P(V) the category of all dp-spaces X with DX € V and all dp-maps. 

A sequence x = Xo,a?i, • • • ,-cn = y in a poset (X, < ) is called a path from x to 
y of length n if for every i € {0 ,1 , . . . ,n — 1}, a:,- is comparable with .r«+i. Then 
we say that x and y are connected. Any maximal subset of a poset with every pair 
of elements in it connected is called a component of (X, < ) . We say that (X, ^ ) is 
connected if it has exactly one component. An ordered pair (x, y) is called an arc 
of (X, < ) if a; < y. For a dp-space X, C is a component of X just when Ext(C) is 
a component of Ext(X). Then we have 

Propos i t ion 1.3[11,12]; If / : X —• Y is a dp-map between two dp-spaces X, Y 
then for every component C of X there exists a component C of Y such that 
f(C) C C and f(Ext(C)) = Ext(C). 

We recall several notions and facts proved in [12]. For any dp-algebra A denote 
by Sk(A) the least subalgebra of A containing the set {x*\ x € A}U{-c+; x € A} and 
closed under relative complementation. Sk(A) is called a skeleton of A. If Sk(A) = 
A then we say then A is skeletal and, moreover, if it is directly indecomposable then 
we say that A is a frame. Obviously, any finite frame is uniquely determined by 
the poset of all its join-irreducible elements. For a finite frame A denote by F(A) 
the frame generated by the poset (X, < ) where X is the set of all join irreducible 
elements of A and x < y if and only if x < y in A and either x € Ext(A) or 
y € Ext(A). 

Proposition 1.4[12]; For a dp-algebra A and the inclusion morphism 
f : Sk(A) —• A we have: 

a) for the dual dp-map h of f we have h(x) = h(y) if and only if Ext(x) = 
Ext(y); 

b) the order in the Priestley dual of Sk(A) is the partial order containing all 
pairs {h(x), h(y)} for which x < y in the dual of A; 

c) A is skeletal if and only if any pair of distinct elements x, y of the dual of A 
satisfies Ext(x) ?- Ext(y), moreover, A is a frame if its dual is a connected 
poset; 

d) if Sk(A) is finite then for an arbitrary variety V of dp-algebras we have 

A€Vif and only if Sk(A) € V; 

e) any endomorphism of a finite frame is invertible; 
f) for every homomorphism / : A — • A ' we have f(Sk(A)) C Sk(A'); 
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g) if A is a finite frame then for an arbitrary variety V of dp-algebras we have 

A€Vif and only if F(A) € V. 

The dp-map h from a) is called skeletal. Since we shall work with dp-spaces 
rather than the algebras themselves, we extend all algebraic terminology to corre­
sponding dp-spaces. 

The aim of this paper is to prove the following 

Theorem 1.5; For any variety V of dp-algebras ike following are equivalent: 

a) V is finite-to-finite universal; 

b) V is finite monoid universal; 

c) V contains a finite frame F suck that the poset Mid(F) has an order compo­
nent with at least tkree distinct arcs, and suck that the only endomorphism 
of F wkose fixed points include Mid(F) is tke identity; 

d) V contains a finite frame G suck tkat Mid(G) kas an order component C 
containing exactly three distinct arcs and at most four other elements, and 
suck that the only endomorphism of G whose fixed points include C is the 
identity. 

For comparison we recall the main result from [12]: 

Theorem 1.6[12]; For a finitely generated variety V of dp-algebras tke following 

are equivalent' 

a) V is universal; 

b) V contains a proper class of non-isomorpkic rigid algebras; 

c) V contains an infinite rigid algebra; 

d) V contains a rigid algebra wkick is not skeletal; 

e) every finite monoid is isomorphic to End(A) for some A € V; 

f) every cyclic group Cp of prime order p is isomorphic to End(A) for some 
-4 € V; 

g) V contains a finite frame F such that the poset MidlF) kas an order com-
<v 

ponent with at least three elements, and suck tkat tke only cndomorpkism of 
F wkose fixed points include Mid(F) is the identity; 

h) V contains a finite frame G suck tkat Mid(G) has an order component C 
containing exactly three elements and at most three other elements, and suck 
tkat tke only endomorphism of G wkose fixed points include C is tke iden­
tity. 

Following Beazer [3], for a dp-algebra A denote by $ A the determination con-
gruence of A, defined by (a, b) € #>t if and only if a* = b* and a"** = 6+ . For 
any directly indecomposable algebra A of finite range, the algebra A/$A is simple 
[3]. By Davey's [4] description of finitely subdirectly irreducible algebras, $ x is the 
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least nontrivial congruence of any finite non-simple subdirectly irreducible algebra. 
Analogously as in [12] we obtain 

Corollary 1.7: If V is a finite-to-finite universal variety of dp-algebras then 

a) V contains a finitely generated finite-to-finite universal subvariety W genera­

ted by a set of no more than eight finite subdirectly irreducible algebras A with 

the same quotient A/$Ai 

b) V must have at least two finite non-isomorphic subdirectly irreducible alge­

bras A which are not simple and have the same quotient A/$A> 

We return to the proof of Theorem 1.5. Any finite-to-finite universal category is 
finite monoid universal, see [17], thus a)=>b). The proof of the implication b)=>c) is 
given in the second section. The third section is devoted to the proof of c)=»d). The 
four section contains the proof of d)=>a). The last section contains some examples 
and concluding remarks. 

2. Necessity. 
Denote by S the semigroup given by the table: 

5 ao ai a2 aз a
4 

a
5 aв 

a
0 a

0 <*i a2 a
3 

a
4 <-5 a

6 

ai ai ai a2 aз a
4 

a
5 aв 
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4 

a
5 

<-4 <*4 <-4 <*5 <-в <-4 a
5 o« 

a
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5 
a
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a
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5 aв a

4 
a

5 

The aim of this section is to prove that every finite dp-space X with End(X) =* S 
satisfies 

(XI) there exists an order component C of Mid(Sk(X)) having at least three arcs; 
(X2) if / : X —• X is a dp-map such that f(x) = x for every x 6 Mid(X) then 

/ is the identity. 

Note that the component of Sk(X) containing C is a frame whose dual satisfies 
c). Hence if V is a finite monoid universal variety of dp-algebras then the skeleton 

of an algebra A with End(A) =" S has a direct indecomposable quotient satisfying 
c) (since S is commutative we have End(A) £ S whenever End(P(A)) =* 5). In 
this way the implication b)=->c) in Theorem 1.5 will have been proved. 

In the following assume that X is a finite dp-space with End(X) 3 S. The d p -
map corresponding to ai is denoted by /,-. Since X is finite every order preserving 
map g: X —» X satisfying g(Max(x)) = Max(g(x)), g(Min(x)) = Min(g(x)) for 
every x € X is a dp-map. We shall exploit this fact without any reference. For a 
mapping / : Z —>Y denote by Im(f) = {y € F; 3z £ Z with f(z) = y}. First, we 
immediately have 
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Lemma 2.1: /o is the identity, Im(/0) 2 Im(/j) = Im(/2) = Im(/3) 3 Im(/4) = 
Im(/5) = Im(/«). 

We prove 

Lemma 2.2: There exists an order component C of X with End(C) = S. 

PjaooF : First we show that for every order component C and every i G 6, fi(C) C 
C whenever ff(C) C C. Assume that /i(C) is a subset of an order component 
C ^ C and define g: X —• X such that g(x) = x for every x G X \ (C U C), 
0(3) == /.;(*) for x £ C, (̂ar) = /•?(#) for every a: G C . Then # is a dp-map 
of X with g2,g4 ^ 1? - a contradiction. Whence for every i G 6 and for every 
order component C we have that ff(C) C /,(C). Assume that there exist an order 
component C and t 6 6 with /i(C)OC = 0. By Lemma 2.1 we can assume that i = 4. 
If ft(x) = a: for every x € X\C then define g: X —• X such that g(x) = /s(a;) 
for x € X \ C, <7(a;) = x for ar € C. In this case g is an invertible dp-map and 
since /$ is not idempotent we conclude that g is not an identity - a contradiction. 
Therefore there exist an order component C ^ C and x G C with h(x) ^ x. 
Define go,g%' X —• X such that go(x) = g%(x) = x for x G X\(CUC), #o(#) = #> 
t?i(*) = /4(s) for x G C, 0o(s) = /iW* 0i(-e) = x for x G C . Both p0 and 
0i are idempotent non-identical dp-maps of X distinct from /4 - a contradiction. 
Thus for every order component C, and every t € 6 we have fi(C) C C. Hence 
.End(K) =* n{i.?nd(C); C is a component of X} = 5 and therefore there exists a 
component C of X with End(C) =* 5 . • 

Let Z be a finite dp-space with a skeletal mapping h: Z —• F . An idempotent 
order preserving mapping g: Z —• Z is called contracting if the following hold 

a) for every x G z, g(x) = x whenever x 6 Ext(Z) or h(x) belongs to a 
component of Mid(Z) with at least three arcs; 

b) for every x € Zt g(x) G li_1(fc(x)); 
c) if y € Y such that either y 6 Ext(K) or a component of Mtd(F) containing 

y has at most two elements then g(h~~1(y)) is a singleton; 
d) if {yo < yi > y2} or {yo > yi < y2} is an order component of Mid(Y)y 

then g~~"(h(yi)) is a singleton for t G {0,2} and if there exists no order 
component C of Mid(Z) with C n h~-1(yi) ^ 0 then \g"l(h(yi))\ = 2, else 
0(ifi~-({yi;t g 3J)) j 8 a shortest path connecting g(h~~l(yo)) and g(h~~1(y2)); 

Lemma 2*3: for every finite poset Z there exists a contracting mapping. 

PEOOF : It is easy to construct an idempotent order preserving mapping satisfying 
a), b), and c). To fulfil d) it suflices to apply Lemma 3.10 from [9]. m 

A subset Z1 of a finite order connected dp-space Z is called a block if B = h~~1(x) 
for an x G Ext(Y) or B = h~~l(C) for a component of Mid(Y) where h: Z —• Y is 
a skeletal dp-map of Z. A block 2? is said to be contractible if either B = h~1(a;) 
for x G &<(F) or £ = î ""1(C) for an order component C of Mtd(Y) containing at 
most two arcs. 

Lemma 2.4: If g is a contracting mapping of a connected finite dp-space Z then 
for every idempotent dp-map f: Z —• Z with Im(f) C Im(g) we have that 



Finite-to-finite universal varieties of distributive double p-algebras. 73 

f \ B = g \ B for every contractible block. 

P R O O F : By a) and b) in the definition of a contracting mapping we obtain that 
g(Max(x)) = Max(g(x)) and g(Min(x)) = Min(g(x)) for every x € Z. If / is 
an idempotent dp-map then / \ Ext(Z) is the identity, thus / preserves each set 
h-*(y) for y € Mid(Y). The rest is clear. • 

By Lemma 2.2 we can assume in the following that X is order connected. Assume 
that h: X —• Y is a skeletal dp-map . 

Lemma 2.5: Every contracting mapping of X is the identity. 

PROOF : Assume that g is a non-identical contracting mapping. Then there exists 
a contractible block B such that g \ B is not the identity. First we prove that B 
is unique. Assume that there exists a contractible block B' distinct from B such 
that g is not identical on B'. Define two mappings go,gii X —• X as follows: 
go(x) = g\(x) = x for every x € X \ (B U B'), g0(x) = g(x), gt(x) = x for x € B, 
gQ(x) = x, gi(x) = g(x) for x £ B'. Since g is idempotent we obtain that g,go,g\ 
are three distinct idempotent nonidentical mappings. Obviously, go, g\ are dp-maps 
- a contradiction with End(X) = S. Thus B is a unique contractible block of X 
on which g is not the identity. Assume g = f\. Then by Lemmas-2.1 and 2.4 there 
exists a block B1 (it is not contractible) such that / 4 f B is not the identity. Define 
go: X —• X such that go(x) = x for all x € X\Bf, go(x) = fi(x) for x € B'. Since 
/ 4 is idempotent we obtain by a direct inspection that (fa is an idempotent non-
identical dp-map distinct from g and / 4 - a contradiction. Thus g = / 4 . If fa \ g(B) 
is the identity then g0: X —• X defined by g0(x) = fo(x) for x € X \ B, g0(x) = x 
for x € B is an invertible non-identical dp-map because /s is one-to-one on the 
set Im(g) and fa -fi g - a contradiction. Thus fe(g(B)) f) g(B) = 0, moreover, 
B' = g~l(h(g(B))) is a contractible block of X . Since / 2 o / 4 = / 4 o / 2 = / 5 

we conclude that / 2 (B ) C B' and /z ° / i = /•* implies that fo is one-to-one on 
f\(B). Since / i ^ / 4 we conclude that / 4 is one-to-one neither on / i ( B ) nor on 
fi(B). Thus g is not one-to-one on the contractible block B' distinct from B - a 
contradiction. • 

Corollary 2.6: There exists a component of Mid(Y) having at least three arcs. 

P R O O F : If every component of Y has at most two arcs then by Lemmas 2.4 and 
2.5 every idempotent dp-map of X is the identity - a contradiction. • 

We have shown that X satisfies (XI). The following lemma gives the proof of 
(X2). 

Lemma 2.7: Every dp-map fofY into itself such that f(y) = y for every y 6 
Mid(Y) is the identity. 

PROOF : Define a mapping /b: X —• X such that fo(x) = x for every x € 
Mid(X), and for x € Ext(X), fo(x) is an element of Ext(X) satisfying h(fo(x)) = 
(f(h(x))). Since / \ Ext(X) and h \ Ext(X) are one-to-one the definition of /o is 
correct. Moreover, /o is a dp-map of X into itself because / is a dp-map of Y and 
f(y) = y for every y € Mid(Y). Since fo(x) = x for every x € Mid(X) we conclude 
that /o is invertible, hence / 0 is the identity and so is f. • 
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Thus any finite dp-space X with End(X) =* S fulfils (XI) and (X2). Whence the 
implication b)=»c) in Theorem 1.5. 

3. Smaller frames. 
The aim of this section is to prove of the implication c)=>d) in Theorem 1.4. The 

proof is analogous to the proof in [12] and therefore we give only a brief proof. 
Clearly, if a poset P has at least three arcs then one of the following posets is a 
subposet of P : 

a b c a a b a 

b e d c d c 

Si S2 S3 
We prove 

Proposition 3.1:1/ A is a finite frame algebra satisfying 
(PI) Mid(A) contains an order component having at least three arcs, 
(P2) every endomorphism f of A such that f(x) = x for every join irreducible 

element in Mid(A) is the identity, 
then thtrt exists a subalgtbra B of a quotitnt of F(A) which is a frame and 

satisfies 

(Yl) one of the order components of Mid(B) is isomorphic to one of the posets 
<$b»-?i»--*2>-?$ <MMI Mid(B) has at most four other components all being sin-
gletons, 

(Y2) every endomorphism f of B satisfying f(x) = x for every join irreducible 
element x in the mort-tltment component of Mid(B) is the identity. 

Obviously, the implication c)-=>d) immediately follows from Proposition 3.L If A 
is a finite frame satisfying (PI) and (P2) then clearly there exists a subalgebra B' 
of A being a frame and satisfying (Yl) or a subalgebra of B" of A satisfying (Yl) 
and (Y2) (but it can not be a frame)., 

For an element a € A denote by a the greatest element with a£ a. We say that 
an element o € Mid(A) is min-defective if Max(v) = Max(a) for every t; € Min(a) 
and a G A.ftd(A) is max-defective if Min(v) = Min(a) for every t; 6 Max(a). We 
recall two auxiliary lemmas proved in [12] 

Lemma 3.2[12]. Let A be a finitt framt such that \Mid(A)\ > 2. Thtn tht sub­
algtbra B of A generated by the set T(A) = Mid(A) U {a; a € Mid(A)} satis fits 
Mid(B) =* Mid(A) and for tvtry pair x,y £ Mid(A) if Min(x) \ Min(y) ^ 0 in A 
thtn so is in B, if Max(x}\ Max(y) £% in A thtn so is in B. 

Moreover tht algebra B is a frame whenever 

(1) for tvtry min-dtftctivt a which is minimal in Mid(A) thtrt is somt y € 
Mid(A) such that Min(a) 0 Min(y) and Min(a) \ Min(y) art both non-
void, 
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(2) for every max-defective a which is maximal in Mid(A) there is some y € 
Mid(A) such that Max(a) f\ Max(y) and Max(a) \ Max(y) are both non-
void. . 

For a € Mid(A) define 

M(a) = {y e Mid(A); Min(a) 0 Mtn(y) / 0 ^ Min(a) \ Min(y)}, 

N(a) = {y € Mid(A); Max(a) D Max(y) ^ 0 ^ Max(a) \ Max(y)}. 

Lemma 3.3[12]: For every a € Mid(A) which is min-defective and minimal in 
Mid(A) we have that M(a) ^ 0, and moreover, every x € M(a) is not max-defective 
and either is not min-defective or a £ M(x). 

For every a € Mid(A) which is max-defective and maximal in Mid(A) we have 
that N(a) ^ 0, and moreover, every x € N(a) is not min-defective and either is 
not max-defective or a £ N(x). 

We prove Proposition 3.1. X = P(A) is a poset of all join irreducible elements of 
A. Since A satisfies (PI) there exists a subposet Y of X on the same set satisfying 

(i) Ext(Y) = Ext(X), 
(ii) there exists exactly one more-element order component of Mid(Y) which is 

isomorphic to one of the following posets 5o, Si, S2> "-*3« 
By Theorem 1.2, B' = D(Y) is a dp-algebra with F(A) = F(B'). Denote by 

Z = D(F(A)). Clearly, the identity is a dp-map from Z onto F , hence B' is 
a quotient algebra of F(A), see [13]. By a direct inspection we obtain that B' 
satisfies (PI) and (P2). By Lemma 3.3 there exists a subset Y' of Y such that the 
restriction to Y' of the order of Y satisfies 

1) Ext(Y') = Ext(Y), 
2) one of the order components of Mid(Y') is isomorphic to one of the posets 

So> Si, S2> S3 and Mid(Y') has at most four other components all being sin­
gletons, 

3) for every min-defective a which is minimal in Mid(Y') there is some y € 
Mid(Y') such that Mtn(a) n Min(y) and Mtn(a) \ Mtn(y) are both non-
void.. 

4) f«*r every max-defective a which is maximal in Mid(Y') there is some y 6 
Mid(Y') such that Max(a) n Max(y) and Max(a) \ Max(y) are both non-
roid, 

5) ftar every pair a, 6 € Mid(Y') such that {a} and {b} are order components of 
ia\Y') there exists an element c in the non-singleton component of Mid(Y') 
such that one of the following conditions holds: 

A) Mtn(a) n Mtn(c) ^ 0 ^ Mtn(c) \ Mtn(a) and either 
• Min(b) 3 Mtn(c) or Mtn(6) n Mtn(c) = 0, 
B) Min(b) D Min(c) £ 0 ^ Mtn(c) \ Mtn(6) and either 

Min(a) 3 Mtn(c) or Mtn(a) n Mtn(c) = 0, 
C) Max(a) 0 Max(c) ^ 0 ^ Max(c) \ Max(a) and either 

Max(b) D Max(c) or Max(b) n Max(c) = 0, 
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D) Max(b) II Max(c) £ 0 =/ Max(c) \ Max(b) and either 
Max(a) D Max(c) or Max(a) f) Max(c) = 0. 

By Proposition 1.4, D(Y') is a frame and since the inclusion of Y' into Y is a 
dp-map we obtain that B" = D(Y') is a quotient of B'. We apply Lemma 3.2 
to B" and we obtain an algebra B. By Lemma 3.2, B is a frame satisfying (Yl) 
(because B' satisfies (Yl) by 2)). Note that the elements of Y' can be considered 
as elements of B'. Let / be an endomorphism of B such that f(x) = x for every 
x belonging to the non-singleton order component C of Mid(B). By Proposition 
1.4, / is an automorphism of B , hence according to 5), Lemma 3.2, and Theorem 
1.2 we conclude that f(x) = x for every x £ Mid(Y') and thus f(x) = x for every 
x £ Mid(Y'). We show that / fixes the generators of B and thus / is the identity 
of B and thus B satisfies (Y2). Proposition 3.1 is proved. • 

4. Finite—to-fltiite universality. 
In this section we prove that every variety V of dp-algebras containing a finite 

frame A satisfying (Yl) and (Y2) is finite-to-finite universal. This will complete 
the proof of Theorem 1.5. The proof is based on an idea in [10] and [12] and we 
will work only with dp-spaces and dp-maps. We shall substitute suitable Priestley 
spaces instead of several elements of the dual Y of the frame A. The following two 
technical lemmas formalize this idea. 

Lemma 4.1; Let X be a frame. Assume that a family {Zv; y £ X'} of non-empty 
Priestley spaces ani a relation R satisfying 

(*) if (w, v) £ R then u £ Zt) v £ Zy for some iistinct x, y £ X' with x < y, 
(**) i / x , y £ X' ani y covers x in X' then there exist u € Zz, v £ Zy with 

(u,v)€R, 
(***) for every x < y < z, x,y,z £ X' ani for every closei set U C Zy the sets 

{v £ Zx; there exists u £ U with (v, tt) € R] ani {v £ Zx; there exists u£U 
with (ti, v) £ R] are closei, 

are given where X' C Mid(X). Define (Z% <,0") as follows: 
l)Z = (X\X')U(\J{Z,;yZX'}), 

2) < is the smallest ordering such that u < v whenever 
either tt, v £ X \ X' ani u < v in X 
or ti,v € Z9 for some y £ X' ani u ^ v in Zy 

or u£X\X', v £ Zy for some y £ X' with u < y in X 
or v £ X \ X$, u£ Zy for some y £ X' with y < t> in X 
or (ti,v) € R. 

3) the topology a is the union of topologies of Z9, y £ X' ani the iiscrete 
topology on X\X'. 

Further, let i/>: Z —* X be the mapping with i/>(x) = x for every x £ X \ X', 
1>(x) = a forx£Zf,y£ X'. 

Then Z as (Z, <,<r) is an orier connectei ip-space with X S- Sk(Z) ani iff »Vo 
skeletal ip-map from Z onto X. 

PROOF : The topology a is compact being a finite union of compact topologies, 
.furthermore, for every U C Xy the set *l>~l(U) is clopen in a. We prove that Z is 
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a Priestley space. Let u £ v be distinct elements of Z. Set [i/>(u)) f) (*l>(v)] = T in 
X. For every t £ T the set Ut = [y) f) Zt is closed increasing in Zt by (***). Since 
Z$(v) is a Priestley space there exists a clopen decreasing set V-/»(») ^ ^ v € V^»). 
^V(v) n V^(») = ^ because t; £ U^v). Let t € T and assume that for every t' £ T 
with i' > t we constructed a clopen decreasing set Vt> C .2/<>, with Vt> n tlt» = 0 and 
such that for every t" £ T, t" > t' we have Vt» n Zt> C Vt>. Set Wt = {w £ Z,; there 
are t' £ T, t' > * and u;' € Vt< with u; < u>' in Z}. By (***), Wt is closed decreasing 
in Zt and Wt f\ Ut = 0. Since Z< is a Priestley space there exists a clopen decreasing 
set Vt C Zt with Wt C VI, utnvt = 0. Set V = (U{V*; < € T}) U (UW^to; 
x € (*l>(v)] \ T}). Then V is clopen decreasing and v £ V, u $ V. Thus Z is 
a Priestley space. Since for every x £ Ext(Z) we have that [x) = ^^(foK*))), 
(x] == ifr~l((il>(x)]) are clopen we conclude by Theorem 1.2 that Z is a dp-space. 
By Proposition 1.4 we obtain that %j> is a skeletal dp-map from Z onto K, thus 
X =- 5*(Z). • 

We say that Z is created by means ofX, {Z9; y £ X'} and i t 

Lemma 4.2; Let Z (or Z') be created by means of X, {Zy\y £ X'}, (or {Z'9;y £ 
X'}) and R (or R!, respectively) where X' C Mtd(K). Assume that for every y £ 
X', fvi Zy —• Z'y is a continuous order preserving mapping. Define f: Z —• Z' 
such thai f(x) = x forx£X\X'f f(x) = fy(x) for x £ Zw, y £ X'. 

Then f is a dp-map if and only if for every (u,v) £ R we have that (f(u),f(v)) £ 
R'. 

PROOF : Since / is continuous and f(Max(x)) = Max(f(x)), f(Min(x)) = 
Min(f(x)) for every x £ Z it suffices to verify that / is order preserving. Obviously, 
/ is order preserving if and only if (/(u),/(v)) € R! whenever (u,v) € R because 
every / f is order preserving. • 

We say that a dp-map / is created by means o£{f9; y £ Y}. 
Further we recall two statements proved in [1], Define the following category T3: 

the objects are Priestley spaces (K, <,r) with a decomposition {I7,V,W,T} of X 
into non-empty clopen subsets such that U, V, U U W U V, W U T are decreasing 
sets and l/UV, VUW, T are not decreasing; the morphisms are all order preserving 
continuous mappings which preserve the decomposition of X. Then it holds: 

Theorem 4.3[1]; The dual category ofTz is finite-to-finite universal. 

Denote by Tn the category of Priestley spaces with n distinguished points which 
are open and extremal and morphisms are all order preserving continuous mappings 
which preserve the distinguished points. 

Lemma 4A[l]:The category T5 contains a full subcategory Q dually isomorphic to 

a finite-to-finite universal category. The category Q is formed by Priestley spaces 

X with constants ao,ai,... ,a4 € Min(X) such that ([A)] = X, and \(x] H A\ ^ 1 
for any x £ X \ A where A = {a,;t € 5}. Every morphism g of Q satisfies 

9^{g(ai)}^{ai} for alii 6 5. 
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To prove that T3 is finite-to-finite universal we shall define a functor $ : T5 —• T3 

similarly as in [6j. For any object Q = ( K , r , < , { a 0 , a i , . . . ,a4}) of Q set A = 

{a,-; t € 5} and define 

<k(Q) = (K,flr, <, {co, ci ,c3}) as follows:,. 
F = U{^n^5}UD , 
F = ( K \ A ) U F , 

where all unions are disjoint, D = {dt; % < 52} and, for % C 5, J57, = {et *; 1 < k ^ 
14}. 

The partial order on (Y, < ) is the least order for which 

(i) d2t ^ <-2t+i and d2t+2 ^ <-2t+i for t € 26 with the addition modulo 52; 
(ii) for every i € 5, ei,2i < Cif2i-i»«i,2i+i w n e n 1 < j < 6, and e,-ti4 < ei,i3; 

(iii) for every i e 5, ds+2t < ei.i and e»-,i4 < d43-2<; 
(iv) for every s € 5, ei,s ^ x € X \ A if and only if at < x in (Q, <); 
(v) for every ar, y € K \ A, x < y if and only if a; < y in Q. 

The topology «7 of #(Q) is the union topology given by the discrete topology on 
the finite set F and by the clopen subspace X \ A of Q. It is easily seen that $(Q) 
is an object of T3, Set c0 = do, ci = d6, C2 = d28-

Since every morphism <p: Q —• Q' of Q satisfies (p(X\A) C X' \ A , the extension 

of (p \ (X \ A) to $(Q) by the identity mapping idF of F is a continuous order 
preserving mapping $((p) satisfying $(y?)(ci) = Ci for t € {0,1 ,2} . The functor $ 
is obviously an embedding., and moreover, $ preserves the finite Priestley spaces. 

Let ij): $(Q) —» $(Q*) ke an order preserving continuous mapping such that Q 
and Q' are objects of Q and {^(c,);t € {0,1 ,2}} = {ci\i e {0 ,1 ,2}}. We aim to 

show that \j) = $((p) for some <p: Q —• Q'. 
First we note that the shortest path from c0 to ci is c0 = do,di,...,de = ci, the 

shortest path from ci to C2 is ci = de,d7,ds, • • • ,<-28 = C2, and the shortest path 
from Co to C2 is Co = do> <fci, <-so> • • • > 0*28 = C2, and their lengths are distinct. Hence 
we conclude hat $ must preserve these paths and therefore i/> \ D is the identity. 

Since, for each t € 5, the shortest path connecting ds+2t to d43-2t is that consisting 
entirely of elements of E^ the restriction of %l> to each Ei must be the identity 
mapping. Altogether, %j> is the identity on the poset F. 

I f x € K \ A C F satisfies an ^ x for some t € 5, then aj < x for some j e 5 
distinct from i. By (iv), e^% < x and ej,8 < x in #(Q); since \j> fixes all elements 
of F and because no elements of F lie above distinct e,-,8 and ej,8, it follows that 
$(x) € Xf \ A> By the definition, (X* \ i ] c r u {ei,8; i € 5}, and from ([A)] = X 
it now follows that 

+HX\A)U{ei#i € 5}) C (X' \ A)U {eM;i € 5}. 

Since the latter space is homeomorphic and order isomorphic to Q\ the mapping 
i> \ Q is a morphism in T5, and ^ = $ ( ^ f Q) as was to be shown. 

Observe that the same result holds if we set Co = d8i> c4 = d8, c2 = 0*27* Thus 
we can summarize 



Finite-to-finite universal varieties of distributive double p-algebras 79 

Theorem 4.5 The category T3 contains a full subcategory U dually isomorphic to a 

finite-to-finite universal category such that 

a) every order preserving continuous map f between two objects from U such 

that {/(ci);t € {0 ,1,2}} = {c,;t £ {0 ,1 ,2}} satisfies f(a) = a for every 
t € {0 ,1,2}, 

b) for every object (K, < , r , {co,cj,C2}) in U we have for every i € {0,1,2} that 

a € Min(X) (or a G Max(X)). 

We shall construct a full embedding from T3 or U into P(V). Let Y be the dual 

of a frame algebra satisfying (Y l) and (Y2). Denote by C the unique non-singleton 
order component of Mid(Y). 

First we assume that C -=- S2. We shall construct a full embedding W: T3 —• 
P(V) preserving the finite Priestley spaces. Assume that C = {co < c\ > c% < C3}. 

For (X,<,r,V i ; t € 4) € T3 , let # (K ,< ,r ,V i ; t € 4) be created by means of F, 
{Vi\a € C} and R = {(ti,v); u < v in X and there exist distinct t,j € 4 with 
u G Vi, v 6 Vj} (we recall that Vo, V2, Vb U Vi U V2, V2 U V3 are decreasing sets and 
Vo U Vi, Vi U V2 U V3 are not decreasing ones). From the properties of decomposition 
{V»; i 6 4} we get that R has the properties (*), (**), and (***) from Lemma4.1. For 
a morphism / : (X,^r,Vi;i € 4 ) —• (K ' ,< , r , V/;t G 4) of T3 the morphism # / 
is created by means of { / \ Vi; a 6 4}. By Lemmas 4.1 and 4.2 and by Proposition 
1.4 we easily obtain that ^ is an embedding functor from T 3 into P(V). We prove 

Propos it ion 4.6;$' is a full embedding from T3 into P(V) preserving the finite 

Priestley spaces. 

PROOF : Let / : (z , <, a) —• (z' , <,cr) be a dp-map where $(K , <, r, V5; t G 4) = 
(z ,<,<r), <.»(K',<,r,Vi';t 6 4) = (z ' ,<,cr) for objects (X,<,r,V i ;t € 4), (K ' ,< 
,r, V/;t 6 4 ) of T3 . Since Sk(Z) = Sfc(z') -= F by Proposition 1.4 there exists a 
dp-map / : Y —• Y with <pz' of = fo<pz where <pz'• Z —• F , tpz>: Z' —• F are 
skeletal dp-maps. Since F satisfies (Y2) we conclude that / is the identity because 
S2 is automorphism free. Hence / \ (Y\ C) is the identity and /(Vi) C V- for every 
t = 0 ,1 ,2,3. Since / is a dp-map we conclude that / \ X: (K, < ,r , Vi; t € 4) —• 
(K', <, r, V/; t € 4) is a morphism of T3, and moreover, $ / f K = / , thus # is full. 
The rest is clear. • 

Secondly, assume that C = S3 where C = {co < c\ < C2}. We shall define a full 
embedding A: U ~—• P(V). 

Define Priestley spaces D and 1£: D is a poset on the set {di\i € 7} such that 
^2i+i < ^2i»c-2i+2 &>-* t € 3, £? is the poset on the set {eo,ej} where eo < e\ (the 
topology in both cases is, of course, discrete). For an object Z = (Z, <, <r, y*; t € 3) 
of U define A z = (W,<,»?) where W is created by means F, {Vc;c € C} and R 
where VCo = Z, VCl = .£7, Vc, = D, H = {(y2,rfo),(eo,d2),(yo,<i6),(yi,e1)}. For a 
morphism / : Z —• Z1 of U a morphism A / is created by means of {/c; c € C} where 
/Co = / , and /C l , /C 2 are the identities. By Lemmas 4.1 and 4.2 and by Proposition 
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1.4 we easily obtain that A is an embedding functor from U into P(V). We prove 
that A is full. To this end we assume that / : AZ —• AZ' is a dp-map where Z 
and Z' are objects of U. Since Sk(AZ) = Sk(AZ') = Y there exists according 

»v 

to Proposition 1.4 a dp-map / : Y —• Y such that <PAZ' O / = / O <pAZ where 
(fi/iZ' AZ —• K, <PAZ' • Az1 —• Y are skeletal dp-maps. Since S3 is automorphism 
free we conclude by (Y2) that / is the identity. Hence f(y) = y for every y G Y \ C, 
/ ( D ) C D, f(E) C E and f(Z) C Z'. Since ( / (u) , / (v)) G i* for every (u,v) € R 
we obtain / (e 0 ) = e0, f(et) = ex, f(yx) = yu and / (d 2 ) = d2. For X € { D , F } 
and x,y € K denote by D(xyy) the length of a shortest path from x to y in X, 
then we have D(yo,yi) < -9(yo,y2) an<- -PWh-fe) < D(d2,<*e) and thus /(do) = d0y 

f(d6) -as d6, /(yo) = yo, /(y2) = V2 because / preserves the ordering. Therefore 
/ \ D and / \ E is the identity and / f Z is a morphism of U from Z into z'. Then 
A ( / f z) = / and A is full. Obviously A preserves finite Priestley spaces. Thus we 
proved 

Proposition 4.7.K: U —• P(V) is a full embedding preserving the finite Priestley 
spaces. 

Finally, assume that C =* So where C = {co < ci,C2,C3}. We shall construct a 
full embedding H from U into P(V). 

For an object Z of U a dp-space QZ is created by means of F , {Zc\ c G C} 

and i? where ZCo = .# and ZCi = {*,-} for t = 1,2,3 are singleton dp-spaces, 
R as {(yrf, 2rl+1); t G 3}. For a morphism / : Z —• Z' of U a dp-map Qf is created 

by means {/c;c € C} where /Co = / , fCi(zi) = z* for every t = 1,2,3. According to 
Lemmas 4.1 and 4.2 and Proposition 1.4, Q, is an embedding functor from U into 

P(V). We prove that Q is full. To this end we assume that / : Q.Z —• QZ' is a 
dp-map. Since Sk(Q,Z) = Sk(QZ') = Y there exists by Proposition 1.4 a dp-map 
/ : Y —• Y such that *puz'°f = f°<Paz where (pnz- &Z —• Y, Vnz1' &%' —> Y 
are skeletal dp-maps. Since Y fulfils (Yl) we have f(C) = C and therefore / (c 0 ) = 
(co). Hence we have f(Z) C Z' and f({zi\i = 1,2,3}) = {z,;t = 1,2,3}. Thus 
we conclude that also f({yi',i € 3}) = {yi\i € 3}. Theorem 4.5 a) implies that 
f(yi) = yi for every t G 3, because / is continuous and order preserving. Whence 
f(zi) = Zi for every t = 1,2,3 and / \ Z is a morphism of £7 from Z into .£'. Further 

we obtain that /(c,) = c* for every t G 4 and by (Y2), / is the identity. Therefore 
f(y) = y for every y €Y\C and Qf \ Z = / . Since H preserves finite Priestley 
spaces we proved 

Proposition 4.8; 0 : U —• P(V) is a full embedding preserving the finite Priestley 
spaces. 

If C =* Si the proof is dual. We summarize these results: 

Theorem 4.0: If V is a variety of dp-algebras containing a finite frame fulfilling 

(Yl) and (Yz) then V is finite-to-finite universal. 

The proof of Theorem 1.5 is complete. • 



Finite-to-finite universal varieties of distributive double p~ algebras 81 

5. Conclusions. 
If Y is a dual of a finite frame then for every y G Mid(Y) denote by B(y) the 

subposet of Y induced on the set Ext(Y) U {y}. Obviously, B(y) is a dp-space and 
Davey [4] proved that D(B(y)) is a subdirectly irreducible algebra. Moreover, for 
every variety V of dp-algebras we have Y G P(V) if and only if B(y) € P(V) for 

every y G Mtd (F ) , see [12].Thus d) of Theorem 1.5 implies a) of Corollary 1.7. 
Moreover, it is easy to see that a variety V of dp-algebras generated by exactly 
one subdirectly irreducible algebra is not finite-to-finite universal. The proof of 
Corollary 1.7 is complete. • 

We show that there exists a finite-to-finite universal variety V of dp-algebras 
generated by two subdirectly irreducible algebras. Let AQ be a dp-algebra such 
that the poset of its join irreducible elements is isomorphic to {a, 6} U {cjjt G 5} 
where a is the biggest element and b > Ci for t G 4 and let A\ be a dp-algebra such 
that the poset of its join irreducible elements is isomorphic to {a, 6} U {c^; t G 5} 
where a is the biggest element and 6 > c,- for t G 2. Consider the variety V generated 
by AQ and A\. Then V contains a finite frame A such that the poset of its join 

irreducible element is {a, 6} U{c\\% € 3} U {d,; t € 5} where a is the biggest element, 
6 > Ci for t G 3 and Cj > d,-, dj+i for t € 3 . By a direct inspection we obtain that A 
satisfies (Yl) and (Y2), whence V is finite-to-finite universal. 

Finally we give an example of a finitely generated universal variety which is not 
finite-to-finite universal. First consider a dp-algebra A such that the poset X of 
its join irreducible elements is {aj;t € 7} where OQ < a% > 02 < 03 > a± < as, and 
03 > «6 . 

Lemma 5.1; The algebra A is simple and if B is a subalgebra of A then B is either 
three-element or two-element chain. 

P R O O F : By Beazer [3], A is simple. Assume that h is the dual dp-map of the 
inclusion of B in A. Then h is surjective see [13] and by a direct inspection we 
obtain that the dual of B is either a two element chain or a singleton (see Theorem 
1.2 for a characterization of dp-maps). • 

Let Y be a poset such that Y = X U {b^i € 3} where 03 > 60 > 61,62 and 
61 > a2, 62 > 04. Set A' = D(Y), then A' is a dp-algebra and let V be a variety 

of dp-algebras generated by A'. By Proposition 1.4, A' is a frame and by Theorem 
1.6 we conclude that V is universal since Y is automorphism free and {61*, t G 3} is 

a component of Mtd(F) . 

Lemma 5.2: If B is a subdirectly irreducible algebra in V then either B is a chain 
of at most four elements, or B = A or the poset of its join irreducible elements is 
isomorphic to the subposet ofY on the set X U {6j} for some t G 3. 

PROOF : Denote Yi the subposet of Y on X U {6,}, for t G 3. By Davey [4], D(Yi) 
is a subdirectly irreducible algebra and the dp-algebras D(Yi), i G 3, generate V, 

see [12]. Since the congruence lattice of dp-algebras is distributive and D(Y) is 
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finite we obtain by Jonsson Lemma (see [8] or [7]) that every subdirectly irreducible 

algebra in V is a quotient of a subalgebra of D(Yi) for some t € 3. By Lemma 5.1 

we obtain that for every t € 3 every proper subalgebra of D(Y») is a chain with at 

most four elements. The rest follows from the result of Davey [4], • 

Assume that V is finite--to--finite universal, then by Theorem 1.5 there exists a 

frame D € V satisfying (Yl). Let Z be the dual of D then for every z G Mid(Z), the 

subposet Z(z) of Z on the set Ext(Z) U {z} is the dual of a subdirectly irreducible 

algebra in V. Rrom Lemma 5.2 we immediately obtain that Ext(Z) SS X and thus 

by Le^nma 5.2 we conclude that D is a quotient of the frame F(A'). Then every 

component of Mid(Z) has at most two arcs and this is a contradiction. Thus 

Theorem 5.3; V is a finitely generated universal variety of dp-algebras which is 

not finite monoid universal. 
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