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Finite—to—finite universal varieties of distributive
double p—algebras

V.KOUBEK

Dedicated to the memory of Zdenék Frolik

Abstract. A concrete category K is called finite-to—finite universal if there exists a full
embedding from the category of graphs in K preserving finiteness. It is shown that a
variety V of distributive double p—algebras is finite-to—finite universal if and only if every

finite m:noid M is isomorphic to an endomorphism monoid of an finite algebra in V and
this is equivalent with the existence of special finite algebrasin V. As a consequex:ce we
obtain that a variety V of distributive double p-algebras is ﬁnit:—to-ﬁnite universal just
when Z contains a ﬁn;t'e—to—ﬁnibe universal, finitely generated subvariety.

Keywords: a distributive double p-algebra, a finite-to—finite universal category, a finite
id universal category, a variety.

Classification: 18B10, 06D15, 20M30

Introduction.

An algebra (L; V,A,* ,*,0,1) of signature (2,2,1,1,0,0) is a distributive double
p-algebra (shortly dp—algebra) provided (L; V, A, 0, 1) is a distributive bounded lat-
tice and * is a unary operation of pseudocomplementation (i.e. z < a* if and only
if £ Aa =0), * is a unary operation of dual pseudocomplementation (i.e. z > a*
ifand only if zVa =1).

A concrete category K is representative for the category G of graphs and compat-
ible mappings, or shortly universal, if there is a full embedding functor F': G — K.
If, moreover, F takes the finite graphs to finitely underlied K-objects then K is
termed finite-to—finite universal. As explained in [17], the term ”universal” is due
to the fact that besides graphs, all other concrete categories can be represented as
full subcategories in a universal category (if the set axiom (M) holds). For example
every monoid (i.e. one-object category) can be represented as the endomorphism
monoid End(A) of a suitable representing K—object A (i.e. as a full one-object
subcategory of K). If a category enjoys this weaker property then we call it a
category representative for monoids, or shortly monoid universal. In this paper we
shall be interested in another property: A concrete category K is said to be finite
monoid universal if every finite monoid M can be represented as the endomorphism
monoid of a suitable K-object A with a finite underlying set. Thus, any finite-to—
finite universal category is finite monoid universal (because graphs are finite monoid
universal, see [17]), while obviously the converse is false.
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The investigation of dp—algebras started in [2] where it was proved that the variety
of all dp~algebras is finite monoid universal. In [10] it was shown that there exists
a finitely generated variety of dp-algebras which is finite-to—finite universal. This
result was strengthened in [12] where all universal finitely generated varieties of
dp-algebras were characterized. The aim of this paper is to characterize finite-to-
finite universal varieties of dp-algebras. We show that for varieties of dp-algebras
the notions of finite-to—finite universality and finite monoid universality coincide.
On the other hand we show that there exists a finitely generated universal variety
of dp-algebras which is not finite-to—finite universal.

1. Preliminaries and results.

The proofs make extensive use of the topological duality introduced by H.A. Pries-
tley [13). A basic outline follows; for further information, see the survey papers
B.A. Davey and D. Duffus [5] or H.A. Priestley [13]. A triple (X, <,7) is called a
Priestley space if X is a set, < is an ordering on X, 7 is a compact topology on
X such that for every pair z,y of elements of X with z ¢ y there exists a clopen
decreasing set U C X with y € U, z ¢ U. Clopen decreasing sets in a Priest-
ley space form a distributive (0, 1)-lattice and the inverse image map f~! of any
continuous and order preserving mapping is a (0, 1)-homomorphism of the corre-
sponding lattices. This gives rise to a contravariant functor D from the category of
all Priestley spaces and continuous, order preserving mappings into the category of
all distributive (0, 1)-lattices and (0, 1)-homomorphisms.

Conversely, for a distributive (0, 1)-lattice L the triple P(L) = (F(L), €, r) forms
a Priestley space where F(L) is the set of all prime filters, < is the reversed inclusion
and the topology 7 is given by an open subbasis {{z € F(L);a ¢ z};a € L}. For
a (0,1)-homomorphism f denote by P(f) the inverse image map, then P(f) is
continuous, order preserving mapping between the corresponding Priestley spaces.

Theorem 1.1[13,14): The composite functors P o D and D o P are naturally
equivalent to the identity functor of their domains.

For a finite distributive lattice L, P(L) can be alternatively defined as a poset
of all join irreducible elements with the discrete topology. This fact is used for
investigation of finite distributive lattices.

For a subset U of a Priestley space X denote by (U] the smallest decreasing subset
of X containing U, [U) the smallest increasing subset of X containing U, Min(U)
the set of all minimal elements in (U], Maz(U) the set of all maximal elements
in [U), Ezt(U) = Maz(U) U Min(U). For an element z we shall write (z], [z),
Min(z), Maz(z), Ezt(z) instead of ({z}], [{z}), Min({z}), Maz({z}), Ezt({z}).
Further denote by Mid(X) = X \ Ezt(X). For a finite distributive lattice L denote
by Maz(L) the set of all maximal join irreducible elements of L, Min(L) the set
of all minimal join irreducible elements of L, Ext(L) = Min(L) U Maz(L), and
Mid(L) the set of all join irreducible elements of L which do not belong to Ezt(L).
The following result’ describes the restriction of Priestley duality to the variety of
dp-algebras:

Theorem 1.2(15] or [4]: For a Priestley space X, DX is a dp-algebra if and only



Finite-to—finite universal varieties of distributive double p-algebras

if [A) is clopen for every clopen decreasing set A C X, (A] is clopen for every clopen
increasing set A C X.

For a continuous order preserving mapping f: X — X' between duals of dp-
algebras, Df is a homomorphism of dp-algebras if and only if
f(Min(z)) = Min(f(z)), f(Maz(z)) = Maz(f(z)) for every z € X.

A Priestley space X such that DX is a dp-algebra is called a dp-space, an order
preserving continuous mapping f between dp-spaces X and X' is called a dp-map
if Df is a homomorphism of dp-algebras. For a variety V of dp-algebras denote by

P(V) the category of all dp-spaces X with DX € V and all dp—maps.

A sequence z = %¢,%;,...,Zn = y in a poset (X, <) is called a path from z to
y of length n if for every i € {0,1,...,n — 1}, z; is comparable with z;4;. Then
we say that z and y are connected. Any maximal subset of a poset with every pair
of elements in it connected is called a component of (X, <). We say that (X, <) is
connected if it has exactly one component. An ordered pair (z,y) is called an arc
of (X,<) if z < y. For a dp-space X, C is a component of X just when Ezt(C) is
a component of Ezt(X). Then we have

Proposition 1.3[11,12]: If f: X — Y is a dp-map between two dp-spaces X,Y
then for every component C of X there ezists a component C' of Y such that
f(C) C C' and f(Ezt(C)) = Ext(C").

We recall several notions and facts proved in [12]. For any dp-algebra A denote
by Sk(A) the least subalgebra of A containing the set {z*;z € A}U{z*;z € A} and
closed under relative complementation. Sk(A) is called a skeleton of A. If Sk(A) =
A then we say then A is skeletal and, moreover, if it is directly indecomposable then
we say that A is a frame. Obviously, any finite frame is uniquely determined by
the poset of all its join-irreducible elements. For a finite frame A denote by F'(A)
the frame generated by the poset (X, <) where X is the set of all join irreducible
elements of A and z € y if and only if z < y in A and either z € Ezt(A4) or
y € Ezt(A).

Proposition 1.4[12): For a dp-clgebra A and the inclusion morphism
f: Sk(A) — A we have: '

a) for the dual dp-map h of f we have h(z) = h(y) if and only if Ezt(z) =
Ezt(y);

b) the order in the Priestley dual of Sk(A) is the partial order containing all
pairs {h(z), h(y)} for which z < y in the dual of A;

c) A is skeletal if and only if any pair of distinct elements z,y of the dual of A
satisfies Ezt(z) # Ext(y), moreover, A is a frame if its dual is a connected
poset;

d) if Sk(A) is finite then for an arbitrary variety V of dp-algebras we have
A€V if and only if Sk(A) e V;

e) any endomorphism of a finite frame is invertible;

f) for every homomorphism f: A — A' we have f(Sk(A)) C Sk(A');
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g) if A is ¢ finite frame then for an arbitrary variety V of dp-algebras we have
A€V ifand only if F(A) € V.

The dp—-map h from a) is called skeletal. Since we shall work with dp-spaces
rather than the algebras themselves, we extend all algebraic terminology to corre-
spondmg dp-spaces.

The aim of this paper is to prove the following

Theorem 1.5: For any variety V of dp-algebras the following are equivalent:
a) Vs finite-to-finite universal;
b) V is finite monoid universal;
c) V contains a finite frame F suck that the poset Mid(F') has an order compo-

nent with at least three distinct arcs, and such that the only endomorphism
of F whose fized points include Mid(F) is the identity;
d) V contains a finite frame G such that Mid(G) has an order component C

containing ezactly three distinct arcs and at most four other elements, and
such that the only endomorphism of G whose fized points include C is the
identity.

For comparison we recall the main result from [12]:

Theorem 1.6[12]: For a finitely generated variety V of dp-algebras the following
are equivalent: ”

a) V is universal;

b) Z contains a proper class of non-isomorphic rigid algebras;

c) Z contains an infinite rigid algebra;

d) Z contains a rigid algebra which is not skeletal;

e) every finite monoid is isomorphic to End(A) for some A € V'

f) every cyclic group C, of pnmc order p is isomorphic to End(A) for some
AeV;

g) K cautuma a finite frame F such that the poset Mid(F') has an order com-

ponent with at least three elements, and such that the only endomorphism of
F whose fized points include Mid(F) is the identity;

h) V contains a finite frame G such that Mid(G) has an order component C
containing ezactly three elements and at most three other elements, and such
that the only endomorphism of G whose fized points include C is the iden-
tity. .

Following Beazer [3], for a dp-algebra A denote by &, the determination con-
gruence of A, defined by (a,b) € ®4 if and only if a* = b* and at = b*. For
any directly indecomposable algebra A of finite range, the algebra A/®,4 is simple
[3]. By Davey’s [4] description of finitely subdirectly irreducible algebras, ® 4 is the
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least nontrivial congruence of any finite non—simple subdirectly irreducible algebra.
Analogously as in [12] we obtain

Corollary 1.7: If V is a finite-to—finite universal variety of dp-algebras then

a) V contains a finitely generated finite~to—-finite universal subvariety W genera-
ted by a set of no more than eight finite subdirectly irreducsble algcbras A with
the same quotient A/® 4;

b) V must have at least two finite non-isomorphic subdirectly irreducible alge-

bras A which are not simple and have the same quotient A/® 4.

We return to the proof of Theorem 1.5. Any finite-to—finite universal category is
finite monoid universal, see [17], thus a)=>b). The proof of the implication b)=>c) is
given in the second section. The third section is devoted to the proof of c)=>d). The
four section contains the proof of d)=>a). The last section contains some examples
and concluding remarks.

2. Necessity.
Denote by S the semigroup given by the table:

S ag a; az asg a as ag
ao ao ay az as Gy as ag
ay ay ay az as aq as ag
ay az az as ay as Gg ay
as as as a; az Qg Gy as
a4 ay ay as ag a4 as ag
as as as ag aq as ag ay
ag ag ag G4 as ag Gy as

The aim of this section is to prove that every finite dp-space X with End(X) = S
satisfies
(X1) there exists an order component C of Mid(Sk(X)) having at least three arcs;
(X2) if f: X — X is a dp—map such that f(z) = z for every z € Mid(X) then
f is the identity.
Note that the component of Sk(X) containing C is a frame whose dual satisfies
c). Hence if Y' is a finite monoid universal variety of dp-algebras then the skeleton

of an algebra A with End(A) 2 S has a direct indecomposable quotient satisfying
¢) (since S is commutative we have End(A) = S whenever End(P(A)) £ S). In
this way the implication b)=>c) in Theorem 1.5 will have been proved.

In the following assume that X is a finite dp-space with End(X) = S. The dp-
map corresponding to a; is denoted by f;. Since X is finite every order preserving
map g: X — X satisfying g(Maz(z)) = Maz(g9(z)), 9(Min(z)) = Min(g(z)) for
every z € X is a dp-map. We shall exploit this fact without any reference. For a
mapping f: Z — Y denote by Im(f) = {y € Y;3z € Z with f(z) =y}. First, we
immediately have
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Lemma 2.1: fy is the identity, Im(fo) 2 Im(f;) = Im(f2) = Im(f3) 2 Im(fs) =
Im(fs) = Im(fc)

We prove
Lemma 2.2: There ezists an order component C of X with End(C) = S

PROOF : First we show that for every order component C and every i € 6, fi(C) C
C whenever f}(C) C C. Assume that f;(C) is a subset of an order component
C' # C and define g: X — X such that g(z) = z for every z € X \ (C U ('),
g(z) = fi(z) for z € C, g(z) = fi(z) for every z € C'. Then ¢ is a dp-map
of X with g%,9* # ¢ - a contradiction. Whence for every i € 6 and for every
order component C we have that f2(C) C fi(C). Assume that there exist an order
component C and i € 6 with f;(C)NC = §. By Lemma 2.1 we can assume that i = 4.
K fi(z) = z for every z € X \ C then define g: X — X such that g(z) = fs(z)
forz € X \C, g(z) = z for z € C. In this case ¢ is an invertible dp-map and
since fs is not idempotent we conclude that g is not an identity — a contradiction.
Therefore there exist an order component C' # C and z € C' with fy(z) # z.
Define go,91: X — X such that go(z) = g1(z) = z for z € X \(CUC"), go(z) = =,
91(z) = fu(z) for z € C, go(z) = fa(z), ;1(z) = z for z € C'. Both g and
g1 are idempotent non-identical dp-maps of X distinct from f; — a contradiction.
Thus for every order component C, and every i € 6 we have f;(C) C C. Hence
End(X) 2 [[{End(C); C is a component of X} & S and therefore there exists a
component C of X with End(C) = S. ]

Let Z be a finite dp-space with a skeletal mapping h: Z — Y. An idempotent
order preserving mapping g: Z — Z is called contracting if the following hold

a) for every ¢ € Z, g(z) = z whenever z € Ezt(Z) or h(z) belongs to a
component of Mid(Z) with at least three arcs;

b) for every z € Z, g(z) € k™) (h(z));

c) if y € Y such that either y € Ezt(Y) or a component of Mid(Y) containing
y has at most two elements then g(h~(y)) is a singleton;

d) if {yo < 1 > y2} or {yo > y1 < y2} is an order component of Mid(Y),
then g~!(h(y:)) is a singleton for i € {0,2} and if there exists no order
component C of Mid(Z) with C Nk~ (y;) # @ then |g7* (h(y1))| = 2, else
g(h~1({yi;1 € 3})) is a shortest path connecting g(h~*(y0)) and g(h~1(y2));

Lemma 2.3: For every finite poset Z there ezists a contracting mapping.

ProoF : It is easy to construct an idempotent order preserving mapping satisfying
a), b), and c). To fulfil d) it suffices to apply Lemma 3.10 from [9)]. =

A subset Z' of a finite order connected dp-space Z is called a block if B = h~(z)
for an z € Ezt(Y) or B = h™}(C) for a component of Mid(Y) where h: Z — Y is
a skeletal dp-map of Z. 'A block B is said to be contractible if either B = h~!(z)
for z € Ezt(Y) or B = h~}(C) for an order component C of Mid(Y') containing at
most two arcs.

Lemma 2.4: If g is a contracting mapping of a connected finite dp-space Z then
for every idempotent dp-map f: Z — Z with Im(f) € Im(g) we have that




Finite-to—finite universal varieties of distributive double p-algebras.

f | B=g | B for every contractible block.

PROOF : By a) and b) in the definition of a contracting mapping we obtain that
g(Maz(z)) = Maz(g(z)) and g(Min(z)) = Min(g(z)) for every z € Z. If f is
an idempotent dp-map then f | Ezt(Z) is the identity, thus f preserves each set
h=1(y) for y € Mid(Y'). The rest is clear. =

By Lemma 2.2 we can assume in the following that X is order connected. Assume
that h: X — Y is a skeletal dp-map.

Lemma 2.5: Every contracting mapping of X is the identsty.

PROOF : Assume that g is a non-identical contracting mapping. Then there exists
a contractible block B such that g | B is not the identity. First we prove that B
is unique. Assume that there exists a contractible block B’ distinct from B such
that g is not identical on B'. Define two mappings go,g1: X — X as follows:
go(z) = g1(z) = z for every z € X \ (BU B’), go(z) = g(z), g1(z) = z for z € B,
go(z) = z, g1(z) = g(z) for z € B'. Since g is idempotent we obtain that g, g, g1
are three distinct idempotent nonidentical mappings. Obviously, go, 91 are dp-maps
- a contradiction with End(X) 2 S. Thus B is a unique contractible block of X
on which g is not the identity. Assume g = fi. Then by Lemmas 2.1 and 2.4 there
exists a block B’ (it is not contractible) such that f; | B is not the identity. Define
go: X — X such that go(z) = z for all z € X\ B, go(z) = f4(z) for z € B'. Since
f4 is idempotent we obtain by a direct inspection that g¢ is an idempotent non-
identical dp—map distinct from g and f; — a contradiction. Thus g = f4. If f5 | g(B)
is the identity then go: X — X defined by go(z) = fs(z) for € X \ B, go(z) = =
for z € B is an invertible non-identical dp—map because f5 is one-to—one on the
set Im(g) and fs # g - a contradiction. Thus f5(g(B)) N g(B) = 8, moreover,
B' = ¢g7(fs(g(B))) is a contractible block of X. Since fo0fy = fiofy = fs
we conclude that f,(B) C B’ and f; o fi = f; implies that f, is one-to—one on
fi(B). Since f1 # fi we conclude that f; is one-to—one neither on f(B) nor on
f2(B). Thus g is not one-to-one on the contractible block B’ distinct from B - a
contradiction. ]

Corollary 2.6: There ezists a component of Mid(Y) having at least three arcs.

PROOF : If every component of ¥ has at most two arcs then by Lemmas 2.4 and
2.5 every idempotent dp-map of X is the identity — a contradiction. ]

We have shown that X satisfies (X1). The following lemma gives the proof of
(X2).

Lemma 2.7: Every dp-map f of Y into itself such that f(y) = y for every y €
Mid(Y) is the identity.

PROOF : Define a mapping fo: X — X such that fo(z) = z for every z €
Mid(X), and for z € Ezt(X), fo(z) is an element of Ezt(X) satisfying h(fo(z)) =
(f(h(z))). Since f | Ezt(X) and h | Ezt(X) are one-to—one the definition of fo is
correct. Moreover, fo is a dp-map of X into itself because f is a dp—map of Y and
f(y) =y for every y € Mid(Y). Since fy(z) = z for every z € Mid(X) we conclude
that fy is invertible, hence f; is the identity and so is f. [ ]
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Thus any finite dp—space X with End(X) 2 S fulfils (X1) and (X2). Whence the
implication b)=>c) in Theorem 1.5.

3. Smaller frames.

The aim of this section is to prove of the implication c)=>d) in Theorem 1.4. The
proof is analogous to the proof in [12] and therefore we give only a brief proof.
Clearly, if a poset P has at least three arcs then one of the following posets is a
subposet of P

a
c
‘ So S] Sz 53

We prove

Proposition 3.1:If A is a finite frame algebra satisfying
(P1) Mid(A) contains an order component having at least three arcs,

(P2) every endomorphism f of A such that f(z) = z for every join irreducible
element in Mid(A) is the identity,

then there ezists a subalgebra B of a quotient of F(A) which is o frame and
satisfies

(Y1) one of the order components of Mid(B) is isomorphic to one of the posets
So, S1, S2, S3 and Mid(B) has at most four other components all being sin-
gletons,

(Y2) every endomorphism f of B satisfying f(z) = z for every join irreducible
element z in the more—element component of Mid(B) is the identity.

Obviously, the implication c)=>d) immediately follows from Proposition 3.1. If A
is a finite frame satisfying (P1) and (P2) then clearly there exists a subalgebra B’
of A being a frame and satisfying (Y1) or a subalgebra of B" of 4 satisfying (Y1)
and (Y2) (but it can not be a frame). .

For an element a € A denote by @ the greatest element with @ } a. We say that
an element a € M :d(A) is min—defective if Maz(v) = Maz(a) for every v € Min(a)
and a € Mid(A) is max—defective if Min(v) = Min(a) for every v € Maz(a). We
recall two auxiliary lemmas proved in [12)

Lemma 3.2[12]: Let A be a finite frame such that |Mid(A)| > 2. Then the sub-
algebra B of A generated by the set T(A) = Mid(A) U {a;a € Mid(A)} satisfies
Mid(B) = Mid(A) and for every pair z,y € Mid(A) if Min(z)\ Min(y) #0 in A
then s0 is in B, if Maz(z)\ Maz(y) # 8 in A then so is in B.

Moreover the algebra B is a frame whenever

(1) for every min-defective a which is minimal in Mid(A) there is some y €

Mid(A) such that Min(a) N Min(y) and Min(a) \ Min(y) are both non-
void,
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(2) for every maz-defective a which is mazimal in Mid(A) there is some y €
Mid(A) such that Maz(a) N Maz(y) and Maz(a) \ Maz(y) are both non-
void. .

For a € Mid(A) define

M(a) = {y € Mid(A); Min(a) N Min(y) # 0 # Min(a) \ Min(y)},
N(a) = {y € Mid(A); Maz(a) N Maz(y) # 8 # Maz(a) \ Maz(y)}.

Lemma 3.3[12]: For every a € Mid(A) which is min-defective and minimal in
Mid(A) we have that M(a) # 0, and moreover, every z € M(a) is not maz-defective
and either is not min-defective or a € M(z).

For every a € Mid(A) which is maz-defective and mazimal in Mid(A) we have
that N(a) # 0, and moreover, every = € N(a) is not min-defective and either is
not maz-defective or a € N(z).

We prove Proposition 3.1. X = P(A) is a poset of all join irreducible elements of
A. Since A satisfies (P1) there exists a subposet ¥ of X on the same set satisfying

(i) Ezt(Y) = Ezt(X),

(ii) there exists exactly one more—element order component of Mid(Y) which is

isomorphic to one of the following posets Sy, Sy, S2, S3.

By Theorem 1.2, B' = D(Y) is a dp-algebra with F(A) = F(B'). Denote by
Z = D(F(A)). Clearly, the identity is a dp-map from Z onto Y, hence B' is
a quotient algebra of F(A), see [13]. By a direct inspection we obtain that B’
satisfies (P1) and (P2). By Lemma 3.3 there exists a subset Y’ of Y such that the
restriction to Y’ of the order of Y satisfies

1) Ezt(Y') = Ezt(Y),

2) one of the order components of Mid(Y"') is isomorphic to one of the posets
So,S1, 52,53 and Mid(Y') has at most four other components all being sin-
gletons,

3) for every min—defective a which is minimal in Mid(Y"') there is some y €
Mid(Y') such that Min(a) N Min(y) and Min(a) \ Min(y) are both non-
veid,

4) for every max-defective a which is maximal in Mid(Y') there is some y €
Mid(Y") such that Maz(a) N Maz(y) and Maz(a) \ Maz(y) are both non-
void,

5) fer every pair a,b € Mid(Y") such that {a} and {b} are order components of
id(Y"') there exists an element ¢ in the non-singleton component of Mid(Y")
such that one of the following conditions holds:

A) Min(a) N Min(c) # 0 # Min(c) \ Min(a) and either

« Min(b) 2 Min(c) or Min(b) N Min(c) =9,

B) Min(b) N Min(c) # 0 # Min(c) \ Min(b) and either
Min(a) 2 Min(c) or Min(a) N Min(c) =9,

C) Maz(a) N Maz(c) # 8 # Maz(c) \ Maz(a) and either
Maz(b) 2 Maz(c) or Maz(b) N Maz(c) = 8,
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D) Maz(b) N Maz(c) # 0 # Maz(c) \ Maz(b) and either
Maz(a) 2 Maz(c) or Maz(a) N Maz(c) = 0.

By Proposition 1.4, D(Y’) is a frame and since the inclusion of Y’ into Y is a
dp-map we obtain that B” = D(Y’) is a quotient of B’. We apply Lemma 3.2
to B" and we obtain an algebra B. By Lemma 3.2, B is a frame satisfying (Y1)
(because B' satisfies (Y1) by 2)). Note that the elements of Y’ can be considered
as elements of B'. Let f be an endomorphism of B such that f(z) = z for every
z belonging to the non-singleton order component C of Mid(B). By Proposition
1.4, f is an automorphism of B, hence according to 5), Lemma 3.2, and Theorem
1.2 we conclude that f(z) = z for every z € Mid(Y’) and thus f(Z) = Z for every
z € Mid(Y'). We show that f fixes the generators of B and thus f is the identity
of B and thus B satisfies (Y2). Proposition 3.1 is proved. ]

4. Finite—to—finite universality.
In this section we prove that every variety V of dp-algebras containing a finite

frame A satisfying (Y1) and (Y2) is finite-to—finite universal. This will complete
the proof of Theorem 1.5. The proof is based on an idea in [10] and [12] and we
will work only with dp-spaces and dp-maps. We shall substitute suitable Priestley
spaces instead of several elements of the dual Y of the frame A. The following two
technical lemmas formalize this idea.

Lemma 4.1: Let X be a frame. Assume that a family {Z,;y € X'} of non-empty
Priestley spaces and a relation R satisfying
(*) i (u,v) € R then u € Z,, v € Z,, for some distinct z,y € X' withz <y,
(**) if z,y € X' and y covers = in X' then there ezist u € Z;, v € Z, with
(u,v) € R,

(***) for every z S y < z, 7,y,2 € X' and for every closed set U C Z, the sets
{v € Z,; there ezists u € U with (v,u) € R} and {v € Z,; there ezists u € U
with (u,v) € R} are closed,

are given where X' C Mid(X). Define (Z,<,0) as follows:
1) Z=(X\X")u(U{Z,;y € X'}),
2) < is the smallest ordering such that u € v whenever
either u,v EX\ X' anduvin X
or u,v € Z, for somey € X' and u v in Z,
oru€ X\ X', ve Z, for somey € X' withu<yin X
orveEX\X,ueZ, forsomeye X' withy<vin X
or (u,v) € R.
3) the topology o is the union of topologies of Z,, y € X' and the discrete
topology on X \ X'.
Further, let : Z — X be the mapping with Y(z) = z for every z € X \ X',

W) =y forz € Zy, y€ X',

Then Z = (Z,<,0) is an order connected dp-space with X = Sk(Z) and ¢ isa

skeletal dp-map from Z onto X.

PRrooF : The topology o is compact being a finite union of compact topologies.
Furthermore, for every U C X, the set $~}(U) is clopen in 0. We prove that Z is
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a Priestley space. Let u * v be distinct elements of Z. Set [¥(u)) N (¥(v)] = T in
X. For every t € T the set Us = [y) N Z; is closed increasing in Z; by (***). Since
Zy(v) is a Priestley space there exists a clopen decreasing set Vy(y) With v € Vi),
Uy(v) N Vy(v) = @ because v ¢ Uy(y). Let ¢t € T and assume that for every ¢ € T
with t' > t we constructed a clopen decreasing set Vi C Zy, with Vo NUy = § and
such that for every t" € T, t" > t' we have VinNZy C Vi, Set W; = {w € Z;; there
aret' € T,t' >t and w' € Vy with w < w' in Z}. By (***), W, is closed decreasing
in Z; and WiNU; = B. Since Z, is a Priestley space there exists a clopen decreasing
set V; C Z, with W, C V,, Uy NV, = 0. Set V = (U{Vi; t € T} U(U{y~(2);
z € (P(v)]\ T}). Then V is clopen decreasing and v € V, u ¢ V. Thus Z is
a Priestley space. Since for every € Ext(Z) we have that [z) = ¥~([¢(z))),
(z] = ¥~1((¥(z)]) are clopen we conclude by Theorem 1.2 that Z is a dp-space.
By Proposition 1.4 we obtain that  is a skeletal dp~map from Z onto X, thus
X = Sk(2). n
We say that Z is created by means of X, {Z,;y € X'} and R.

Lemma 4.2: Let Z (or Z') be created by means of X, {Z,;y € X'}, (or {Z};y €
X'}) and R (or R', respectively) where X' C Mid(X). Assume that for everyy €
X', fy: Zy — Z, is a continuous order preserving mapping. Define f: Z — 2'
such that f(z) ==z forz € X\ X', f(z) = fy(z) forz € 2,, ye X'.

Then f is a dp-map if and only if for every (u,v) € R we have that (f(u), f(v)) €
R'.

PROOF : Since f is continuous and f(Maz(z)) = Maz(f(z)), f(Min(z)) =
Min(f(z)) for every z € Z it suffices to verify that f is order preserving. Obviously,
f is order preserving if and only if (f(u), f(v)) € R’ whenever (u,v) € R because
every fy is order preserving. L]

We say that a dp-map f is created by means of {f,;y € Y}.

Further we recall two statements proved in [1]. Define the following category T3:
the objects are Priestley spaces (X, <, r) with a decomposition {U,V,W,T} of X
into non-empty clopen subsets such that U, V, UUW UV, W U T are decreasing
sets and UUV, VUW, T are not decreasing; the morphisms are all order preserving
continuous mappings which preserve the decomposition of X. Then it holds:

Theorem 4.3[1]: The dual category of T is finite-to-finite universal.

Denote by T, the category of Priestley spaces with n distinguished points which
are open and extremal and morphisms are all order preserving continuous mappings
which preserve the distinguished points.

Lemma 4.4[1):The category Ts contains a full subcategory Q dually isomorphic to
a finite-to-finite universal category. The category Q is formed by Priestley spaces

X with constants ag,ay,...,84 € Min(X) such that ([A)] = X, end |(z] N A] £1
for any z € X \ A where A = {a;;i € 5}). Every morphism g of Q satisfies

9™ Yg(a;)} = {a;} for alli €5.
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To prove that T is finite-to-finite universal we shall define a functor &: Ts — T;
similarly as in [8]. For any object @ = (X,7,<,{a0,a1,...,a4}) of Q set 4 =
{ai;1 € 5} and define ~

@(Q) = (Y,0,<, {c0, c1,c3}) as follows: .
F=|J{E;ie5}UD,
Y=(X\A)UF,

where all unions are disjoint, D = {d;;i < 52} and, for i € 5, E; = {e; ;1 < k <
14}. ‘

The partial order on (Y, <) is the least order for which

(1) d2i € d2i+1 and daiqa € daiyg for i € 26 with the addition modulo 52;

(i) for every i € 5, €i2j € €i,2j-1,¢€i2;+1 when 1 < j <6, and ;14 < €i,13;

(iii) for every i € 5, ds+2i < €;,1 and €; 14 < da3—2i;

(iv) for every i € 5, ¢;8 <z € X \ A if and only if a; < z in (@, <);

(v) for every z,y € X\ A,z < yifand only if z < y in Q.

The topology o of ®(Q) is the union topology given by the discrete topology on
the finite set F and by the clopen subspace X \ A of Q. It is easily seen that $(Q)
is an object of Ts. Set co = dy, c; = ds, ¢z = das.

Since every morphism ¢: Q — Q' of Q satisfies (X \ A) C X'\ A, the extension

of p | (X \ A) to ®(Q) by the identity mapping idr of F is a continuous order
preserving mapping &(yp) satisfying ®(p)(c;) = ¢; for i € {0,1,2}. The functor
is obviously an embedding, and moreover, ® preserves the finite Priestley spaces.

Let ¢: $(Q) — ®(Q’) be an order preserving continuous mapping such that Q
and Q' are objects of @ and {¢(c;);i € {0,1,2}} = {ci;i € {0,1,2}}. We aim to
show that ¢ = &(y) for some ¢: Q — Q'.

First we note that the shortest path from ¢; to c; is ¢g = dy, dy,...,ds = ¢4, the
shortest path from ¢; to ¢y is ¢; = dg,d7,ds,...,d2s = c2, and the shortest path
from cp to ¢y is ¢y = do, dsy, dso, . .., d2s = c2, and their lengths are distinct. Hence
we conclude hat 1 must preserve these paths and therefore ¥ | D is the identity.

Since, for each i € 5, the shortest path connecting ds+2i to dy3—3; is that consisting
entirely of elements of E;, the restriction of ¥ to each E; must be the identity
mapping. Altogether, 4 is the identity on the poset F.

If z € X\ A CY satisfies a; € = for some ¢ € 5, then a; € = for some j €
distinct from i. By (iv), e;¢ < z and €5 < z in ®(Q); since 3 fixes all elements
of F and because no elements of F lie above distinct ;s and e;g, it follows tha.t
¥(z) € X’ \ A. By the definition, (X’ \ 4] € X'U {eis; ¢ € 5}, and from ([4)] =
it now follows that

(X \ A)U{eini€sh S (X' \ A)U {eis;i €5}.

Since the latter space is homeomorphic and order isomorphic to Q', the mapping
¥ | Q is a morphism in Ty, and ¢ = &(% | Q) as was to be shown.

Observe that the same result holds if we set ¢y = dg;, ¢; = ds, c3 = dy7. Thus
we can summarize
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Theorem 4.5 The category T3 contains a full subcategory U dually isomorphic to a
finite-to-finite universal category such that
a) every order preserving continuous map f between two objects from U such
that {f(c;);i € {0,1,2}} = {ci;t € {0,1,2}} satisfies f(c;) = c; for every
i€ {0,1,2},
b) for every object (X, <,7,{co,c1,¢c2}) in U we have for everyi € {0,1,2} that
¢; € Min(X) (or ¢; € Maz(X)).

We shall construct a full embedding from T? or U into P(V). Let Y be the dual

of a frame algebra satisfying (Y1) and (Y2). Denote by C the unique non-singleton
order component of Mid(Y').

First we assume that C 2 S;. We shall construct a full embedding ¥: T3 —s
P(Z) preserving the finite Priestley spaces. Assume that C = {cp < ¢1 > ¢2 < ¢3}.
For (X,<,7,V;;i € 4) € T3, let ¥(X,<,7,Vi;i € 4) be created by means of Y,
{Vi;ci € C} and R = {(u,v); 4 < v in X and there exist distinct i,j € 4 with
u € V;, v € V;} (we recall that V;,V;, Vo U V; U V2, V2 U V; are decreasing sets and
Vo UV;, V3 UV, UV; are not decreasing ones). From the properties of decomposition
{Vi; 1 € 4} we get that R has the properties (*), (**), and (***) from Lemma 4.1. For
a morphism f: (X,<,r,Vi;i € 4) — (X', &, 7,V/;i € 4) of T® the morphism ¥f
is created by means of {f | V;;ci € 4}. By Lemmas 4.1 and 4.2 and by Proposition
1.4 we easily obtain that ¥ is an embedding functor from T? into P(Y) We prove

Propcsition 4.6:¥ is a full embedding from T® into P(V) preserving the finite
Priestle: spaces.

PROOF : Let f: (2,<,0) — (Z',<,0) be a dp-map where (X, <, 7, V;;1 €4) =
(7,<,0), #(X', <, 7 Visi € 4) = (2',%,0) for objects (X, <,7,Visi € 4), (X', <
7, V!ii € 4) of T3. Smce Sk(Z) = Sk(Z') = Y by Proposition 1.4 there exists a
dp-map f: Y — Y withpzi0f = fopz where pz: Z — Y, pz: Z2' — Y are
skeletal dp-maps. Since Y satisfies (Y2) we conclude that f is the identity because
S, is automorphism free. Hence f | (Y \ C) is the identity and f(V;) C V/ for every
i =0,1,2,3. Since f is a dp-map we conclude that f | X: (X,<,7,V;;i € 4) —
(X',&,7,V!;i € 4) is a morphism of T2, and moreover, ¥f | X = f, thus ¥ is full.
The rest is clear. ™

Secondly, assume that C & S3 where C = {co < ¢; < ¢z}. We shall define a full
embedding A: U — P(V)

Define Pnestley spaces D and E: D is a poset on the set {di;i € T} such that
d2it1 < daiydaiyz for i € 3, E is the poset on the set {eg,e;} where ey < €; (the
topology in both cases is, of course, discrete). For an object Z = (2, <, 0, yi;i € 3)
of l~1 define AZ = (W, <,n) where W is created by means Y, {V,;c € C} and R
where Vco = Zv Vc‘ = E, Vc: = Dv R= {(UZ)do)y (301d?)r(yo,dG)r(yhel)}‘ For a
morphism f: Z — Z' of U a morphism A f is created by means of {f.;c € C} where

'« = f, and f,, f., are the identities. By Lemmas 4.1 and 4.2 and by Proposition
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1.4 we easily obtain that A is an embedding functor from U into P(Y:). We prove
that A is full. To this end we assume that f: AZ — AZ' is a dp—map where Z
and Z' are objects of U. Since Sk(AZ) = Sk(AZ') = Y there exists according
to Proposition 1.4 a dp-map f: ¥ — Y such that gz o f = foppz where
prz: AZ — Y, prz : AZ' — Y are skeletal dp-maps. Since S; is automorphism
free we conclude by (Y2) that f is the identity. Hence f(y) =y for everyy € Y\ C,
f(D)C D, f(E) C E and f(Z2) C 2'. Since (f(u), f(v)) € R for every (v,v) € R
we obtain f(eo) = eo, f(e1) = €1, f(31) = w1, and f(d2) = d,. For X € {D,Y}
and z,y € X denote by D(z,y) the length of a shortest path from z to y in X,
then we have D(yo,y1) < D(yo,y2) and D(do,d3) < D(d2,ds) and thus f(dy) = dp,
f(de) = ds, f(¥0) = yo, f(y2) = y2 because f preserves the ordering. Therefore
f | Dand f | Eis the identity and f | Z is a morphism of U from Z into Z’. Then
A(f I Z) = f and A is full. Obviously A preserves finite Priestley spaces. Thus we
proved

Proposition 4.7:A: U — P(L/) is a full embedding preserving the finite Priestley
spaces. -

Finally, assume that C & Sy where C = {¢p < c1,¢2,c3}. We shall construct a
full embedding § from g into P(K).

For an object Z of U a dp-space Q22 is created by means of Y, {Z;c € C}
and R where Z,, = Z and Z; = {z} for i = 1,2,3 are singleton dp-spaces,
R = {(yi, zi4+1);1 € 3}. For a morphism f: Z — 2’ of U a dp—map §Qf is created
by means {f.;c € C} where f., = f, f,(2i) = 2; for every i = 1,2,3. According to
Lemmas 4.1 and 4.2 and Proposition 1.4, Q is an embedding functor from U into
P(V) We prove that Q is full. To this end we assume that f: QZ — Q2'is a

dp-map. Since Sk(22) = Sk(2Z') =Y there exists by Proposition 1.4 a dp-map
f:Y — Y such that gaz o f = foypqz where vaz: N2 —Y,paz: Q2 —Y
are skeletal dp-maps. Since Y fulfils (Y1) we have f(C) = C and therefore f(co) =
(co). Hence we have f(Z) C 2’ and f({zi;i = 1,2,3}) = {zi;i = 1,2,3}. Thus
we conclude that also f({yi;¢ € 3}) = {yi;¢ € 3}. Theorem 4.5 a) implies that
f(yi) = y; for every i € 3, because f is continuous and order preserving. Whence
f(z;) = z; foreveryi = 1,2,3 and f | Z is a morphism ofU from Z into Z'. Further
we obtain that f(c;) = ¢; for every i € 4 and by (Y2), f is the identity. Therefore
flyy=yforevery y€ Y\C and Qf | Z = f. Since Q preserves finite Priestley
spaces we proved

Proposition 4.8: Q: U — P(V) is a full embedding preserving the finite Priestley
spaces.

If C = S the proof is dual. We summarize these results:

Theorem 4.9: If V is a variety of dp-algebras containing a finite frame fulﬁllmg
(Y1) and (Y8) then V' is finite-to-finite universal.

The proof of Theorem 1.5 is complete. "
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5. Conclusions.

K Y is a dual of a finite frame then for every y € Mid(Y) denote by B(y) the
subposet of Y induced on the set Ezt(Y)U {y}. Obviously, B(y) is a dp-space and
Davey [4] proved that D(B(y)) is a subdirectly irreducible algebra. Moreover, for
every variety V of dp-algebras we have Y € P(V) if and only if B(y) € P(K) for
every y € Mid(Y), see [12].Thus d) of Theorem 1.5 implies a) of Corollary 1.7.
Moreover, it is easy to see that a variety V of dp-algebras generated by exactly
one subdirectly irreducible algebra is not finite-to—finite universal. The proof of
Corollary 1.7 is complete. ]

We show that there exists a finite-to—finite universal variety V of dp-algebras
generated by two subdirectly irreducible algebras. Let Ao be a dp-algebra such
that the poset of its join irreducible elements is isomorphic to {a, b} U {ci;: € 5}
where a is the biggest element and b > ¢; for i € 4 and let A, be a dp-algebra such
that the poset of its join irreducible elements is isomorphic to {a,b} U {¢;;t € 5}
where a is the biggest element and b > ¢; for ¢ € 2. Consider the variety V generated
by Ao and A;. Then V contains a finite frame A such that the poset of its join
irreducible element is {a,b} U {c1;i € 3}U{d;; i € 5} where a is the biggest element,
b > c; for i € 3 and ¢; > d;,dit1 for i € 3. By a direct inspection we obtain that A
satisfies (Y1) and (Y2), whence V is finite-to—finite universal.

Finally we give an example of a finitely generated universal variety which is not
finite-to—finite universal. First consider a dp-algebra A such that the poset X of
its join irreducible elements is {a;;¢ € 7} where ayp < a; > a2 < a3 > a4 < a5, and
az > ag.

Lemma 5.1: The algebra A is simple and if B is a subalgebra of A then B ts either
three-element or two-element chain.

PROOF : By Beazer (3], A is simple. Assume that h is the dual dp—map of the
inclusion of B in A. Then h is surjective see [13] and by a direct inspection we
obtain that the dual of B is either a two element chain or a singleton (see Theorem
1.2 for a characterization of dp-maps). ]

Let Y be a poset such that Y = X U {b;;: € 3} where a3 > by > b1, and
by > az, by > a4. Set A' = D(Y), then A’ is a dp-algebra and let V be a variety

of dp—algebras generated by A’. By Proposition 1.4, A’ is a frame and by Theorem
1.6 we conclude that V is universal since Y is automorphism free and {b,;: € 3} is

a component of M id(;’).

Lemma 5.2: If B is a subdirectly irreducible algebra in V then either B is a chain
of at most four elements, or B = A or the poset of its join irreducible elements is
isomorphic to the subposet of Y on the set X U {b;} for some i € 3.

PROOF : Denote Y; the subposet of Y on X U {b;}, for i € 3. By Davey (4], D(Y;)
is a subdirectly irreducible algebra and the dp-algebras D(Y;), i € 3, generate V,
see [12]. Since the congruence lattice of dp-algebras is distributive and D(Y) is
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finite we obtain by Jénsson Lemma (see [8] or [7]) that every subdirectly irreducible
algebra in V is a quotient of a subalgebra of D(Y;) for some i € 3. By Lemma 5.1

we obtain that for every ¢ € 3 every proper subalgebra of D(Y;) is a chain with at
most four elements. The rest follows from the result of Davey [4]. ]

Assume that V is finite-to—finite universal, then by Theorem 1.5 there exists a
frame D € V satisfying (Y1). Let Z be the dual of D then for every z € Mid(Z), the

subposet Z(2) of Z on the set Ezt(Z)U {z} is the dual of a subdirectly irreducible
algebra in V. From Lemma 5.2 we immediately obtain that Ezt(Z) 2 X and thus

by Lemma%.2 we conclude that D is a quotient of the frame F((A'). Then every
component of Mid(Z) has at most two arcs and this is a contradiction. Thus

Theorem 5.3: V is a finitely generated universal variety of dp-algebras which is
not finite monoid universal.
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