Previous |  Up |  Next

Article

References:
[1] Sobolev S. L.: On a theorem in functional analysis. (Russian). Mat. Sb. 4 (88) (1938), 471-497; (English translation: Amer. Math. Soc. Tranasl. 3 (84) (1983), 39-88).
[2] Muckenhoupt B., Wheeden R. L.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 193 (1974), 281-274. MR 0340523
[3] Adams D.: A trace inequality for generalized potentials. Studia Math. 48 (1973), 99-108. MR 0336316 | Zbl 0237.46037
[4] Coifman R., Weiss G.: Analyse harmonique non-commutative sur certains espaces homogénes. Lecture Notes in Math. 242, Springer-Verlag, 1971. MR 0499948 | Zbl 0224.43006
[5] Kufner A., John O., Fučík S.: Function spaces. Academia Prague. Noordhoff International Puhliahing, Leyden, 1977. MR 0482102
[8] Stein E., Weiss G.: Introduction to Fourier Analysis on Euclidian Spaces. Princeton University Press, Princeton, New Jersey, 1971. MR 0304972
[7] Krasnosel'skii M. A., Rutickii Ya. B.: Convex functions end Orlics spaces. Noordhoff, Groningen, 1961.
[8] Musielak J.: Modular spaces. Lecture Notes in Math. 1034, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1983. MR 0724434 | Zbl 0599.46036
[9] Calderon A. P.: Inequalities for the maximal function relative to a metric. Studia Math. 67 (1976), 297-306. MR 0442579 | Zbl 0341.44007
[10] Macias R. A., Segovia C.: A well behaved quasi-distance for spaces of homogeneous type. Trab. Mat. Inst. Argent. Mat. 32 (1981), 18p.
[11] Hedberg L.: On certain convolution inequalities. Proc. Amer. Math. Soc 36 (1973), 505-610. MR 0312232 | Zbl 0283.26003
[12] Adams D.: A note on Riesz potentials. Duke Math. J. 4 (1975), 765-777. MR 0458158 | Zbl 0336.46038
[13] O'Neil R.: Les function conjugées et les intégrales fractionaires de la classe $L(log^+ L)^s$. C.R. Acad. Sc. Paris 263 (1966), 463-466.
[14] Welland G.: Weighted norm inequalities for fractional integrals. Proc. Amer. Math. Soc. 61 (1975), 143-148. MR 0369641 | Zbl 0306.26007
[15] Kokilashvili V., Gabidsashvili M.: Weighted inequalities for anisotropic potentials. (Russian). Dokl. Akad. Nauk. SSSR (1985), 1304-1306; English translation: Soviet Math. Dokl. 31 (1985), 583-585.
[16] Kokilashvili V., Krbec M.: On the boundedness of anisotropic fractional maximal functions and potentials in weighted Orlicz spaces. (Russian). Trudy Tbilias. Mat. Inst. Rasmadze Akad. Nauk Grusin. SSR 82 (1986), 106-115. MR 0884700
[17] Genebashvili S.: Two weight norm inequalities for fractional maximal functions defined on homogeneous type spaces. (Russian) Soobehch. Akad. Nauk Grusin SSR (to appear).
Partner of
EuDML logo