Previous |  Up |  Next

Article

References:
[1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1-18. MR 0473939 | Zbl 0352.47027
[2] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis. Adv. in Math. 21 (1976), 355-364. MR 0425688
[3] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifold. J. Funct. Anal. (1971), 250-274. MR 0288638
[4] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 0394329 | Zbl 0305.47029
[5] S. A. HUSAIN V. M. SEHGAL: A remark on a fixed point theorem of Caristi. Math. Japonica 25 (1980), 27-30. MR 0571258
[6] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces. Bull. Acad. Pol. Sol. (Ser. Sci. Math.) 23 (1975), 891-894. MR 0385654
[7] J.-P. PENOT: A characterisation of tangential regularity. Nonlinear Analysis TMA 5 (1981), 625-643. MR 0618216
[8] V. M. SEHGAL R. E. SMITHSON: A fixed point theorem for weak directional contraction multifunctions. Math. Japonica 25 (1980), 345-348. MR 0586530
[9] M. TURINICI: Mapping theorems via variable drops in Banach spaces. Rend. Ist. Lombardo Sci. Lett. (A) 114 (1980), 164-168. MR 0698680 | Zbl 0504.46008
[10] M. TURINICI: A generalization of Brézis-Browder's ordering principle. An. Sti. Univ. "Al. I. Cuza" Iasi (S.I-a) 28 (1982), 11-16. MR 0667714 | Zbl 0504.54033
[11] M. TURINICI: Mapping theorems via contractor directions in metrizable locally convex spaces. Bull. Acad. Pol. Sci. (Ser. Sci. Math.) 30 (1982), 161-166. MR 0673440 | Zbl 0497.47038
[12] M. TURINICI: A maximality principle on ordered metric spaoes. Rev. Colomb. Mat. 16 (1982), 115-124. MR 0685247
Partner of
EuDML logo