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A FIXED POINT RESULT OF SEGHAL-SMITHSON TYPE
Mihai TURINICI

Abstract: A maximality principle due to the author is used
to obtaln & metricael generalization of a Sehgel-Smithson fixed
point result involving multivalued mappings.

Key words: Fixed point, multivalued mapping, me::lmal‘elo-
ment, contractivity condition, cluater point, inward set.

Clagsification: 54H25

Let (X,d) be a complete metric space, Indicating by 2% the
femily of all nonempty subsets of X and by C(X) the class of all
compact Y in 21, let d(¢,Y) stand for the usual distance functi-
on from the points of X to the element Y of 2% ana p(Y) (=) the
associated projection function from X to Ye C(X) given by

Y)(x) = SyeY;d(x,Y) = d(x,y)}, xeX.
Suppose ¥ is a nonempty subset of X and let the (multivalued)
mapping T from Y to C(X) be given. After a terminology of Sehgal
and Smithson [8] we shall say T is a weak directional contracti-
on if a number k in (0,1) may be found such that, for each zeY
there exists u in p(Tz)(z) with DP(z,u) <k, where

DP(z,u) = 0 if z = uy; c© if Y(z,ul=4¢

= int H(Tz,Tw)/d(z,w);w &Y(z,0)

(H being the usual(generalized) Hausdorff metric on 2X and Y(z,

, if 2(z,u) %9

ul the subset of all weY distinct from z with the property

da(z,w) + d(w,u) = d(z,u)) and a directional contraction if k = 1
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in this definition. The following result established by Sehgal
and Smithson in the above quoted paper may be considered as the

start point of our developments.

Theorem 1. Suppose Y is closed and T is such that
(1) the function ¢ = @n from Y to [0,00) defined by
¢(x) = a(x,Px), x€Y, is lower memicontinuous.
‘If, in addition, either of the following conditions holds
(11) T is & weak directional contraction
(1i1) T is a directional contraction snd each sequence
(sy) in Y with D?(s ,w ) —> 1 for some (w ) in X fulfilling
w,6p(Ts, )(z ), n€N, has a cluster point
the considered mapping T has at least a fixed point (in Y).

Concerning the first part of this result (which extends a
similer one due to Husain and Sehgal [5]) it immediately fol-
lows by definition that (ii) may be written as

(i1) ° for each z in Y not belonging to Tz there existis u
in p(T2)(z) with H(Tz,Tw) < Xk.d(z,w) for some w in Y(z,ul
In this context, let us note that, z,u,w being as above
(1) da(z,w) + 4&(w,Pz) = d(z,Pz)
beceuse d(z,w) + d(w,u) = d(z,u) = d(z,Tz) gives at once

a(w,u). = a(z,T8) - a(z,w) £4d(z,u") - a(z,w)<da(w,u’), u’s Tz
that is, d(w,u) £d(w,Tz) and since the reverse inequality
(a(w,u)z d(w,T2z)) also holds, our claim is proved; observing
that the reciprocal of (ii)” (given z end w satisfying (1) an
element u in p(Tz)(z) may be determined with we ¥(z,u)) is not
valid - as simple examples show - when the range of T is not in
C(X), it is clear that the following condition strictly inclu-
des, in general, the above one
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(11) °° for each = in Y not belonging to Ts there exists
w in Y(z,?s] with H(?s,?w)< k-.d(z,w)
(where, given A in 2 we denoted, for each s€X
(2) Y(z,Al = fwe¥; wssz, d(s,w) + d(w,A) = a(z,A)3})
so that, a natural problem is whether a replacement of (ii) by
(11) °° would produce the same conclusion in the statement of
Theorem 1 (the first part). At the same time, moting that, umdexr
the acceptance of (i1) "’ with k = 1, a more general formulationm
of (ii1) 1is

(111) ° any sequence (z,) in Y for which ’n‘# ?s,, nel,
H(!:n,hn)<d{sn,wn). nexN, and K(!sn,hn)/d(:n,vn) ~—> 1 for wo-
me (w ) in X fulfilling w € Y(s,,Ts 1, n£KN, has a cluster point
is again of interest to ask whether a substitution of (iii) by
(111) ° 1leads us to the same conclusion about the fixed points
of T. The answer to both questions is positive (as we shall see
below) and is based on a maximality principle stated by the sut-
hor in [12]. Some further aspects of the problem will be discus-

sed in a future paper.

Let (V,d) be & metric space. Given the ordering £ on ¥V, let
us call the sequence (vn) in V, ascending provided that viév,
whenever 14 j, and the element v in V, maximal when v£wéV imp-
lies v = w. The following Zorn principle obtained by the author
in the above quoted reference will be in effect in the sequel.

. Theorem 2. Suppose that

(iv) any ascending sequence in V is a Cauchy sequence boun-
ded from above.
Then, to every v in V there corresponds & maximal element w in V
such that v<w,

An interesting particular form of this theoream (which, under
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i%s quasi-metric variant [10] appears as a generalization of the
well-known Brésis-Browder ordering principle [2]) can be stated
along the following lines. Let (X,d) be a metrio space., Given
the function ¢:X—> [0,00) ocall the subset Y of X, p-closed
when any convergent sequence (’n) in Y with (ga(yn)) decreasing
has its limit in Y too, and @ ~complete provided each Cauchy se-
quence (yn) in Y with (qa(yn)) decreasing converges (in X); at
the same time, let us call the ambient function ¢ , Y-self-lsc
when for each sequence (y,) in Y with (¢ (y,)) decreasing, y,—
—>yeY and @(y, )4+ for all neN, we have ¢(y)£t, Observe
that if these properties involving Y and ¢ are verified, the
eondition (iv) holds in the structure (Y,d,< ) where < is the
ordering on X defined by the convention
x£y if and only if d(x,y) < ¢ (x) -~ @ (y)

and therefore, we have (see also the above quoted author s paper).

Theorem 3. Let the couple Y in 2X and @:X—» [0,00) be such
that Y is ga-oloud and ¢ -complete while @ is Y-self-lsc. Then,
to every y in Y there corresponds z in Y with the properties
(a) a(y,s) £ @(y) - 9(2), (V) &(z,w)>@(z) - @ (w) for all
wWéEY, whb.

Under these preliminaries, let (X,d) be a metric space. It
will be suffiocisnt in the sequel to work with the (generalized)
Hausdorff pseudo-metric D on 2I defined as

D(Y,2) = sup {4(y,2)sye¥t, Y,2e25
rather than the (generalized) Hausdorff metric H (observe at this
moment that, B(X) indicating the class of all bounded Y in 2%,
we have

H(Y,2) = max {D(Y,2),D{Z,Y)%, Y,Ze B(X)

as well as (by standard computations)
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(3 a(x,2) £ a(x,¥) + D(Y,z), xeX, ¥,2eB(X)).
Let Y be a nonempty subset of X and T:Y —> B(X) a (multivalued)
map. As basic assumptions about the couple (Y,?) we shall admit
that

(v) Y is T-convex (for each z in Y not belonging to Tz
the subset Y(z,Tz] defined as in (2) is not empty)
and moreover (letting ¢ = P qp from X %o [0,00) be introduced as
in (1) with @ = 0 outside Y)

(vi) Y 1s both @ -closed and @-complete

(vii) 9 4s Y-self-lsc.

.

Concerning the problem of extending Theorem 1 is the sense
we already precised, the first main result of the present note
is

Theorem 4. Assume that, in addition to the above hypothe-
ses, an lsc strictly increasing function f:3 [0,00) —> [ 0,20)
with £(0) = 0, £(t)>t, t>0 (s0, £(00) = c0) may be found with
the property

(viii) for each z in Y not belonging to Tz there exists w
in Y(z,Tz] with

2(D(Tz,Tw) + t)£2(d(z,w) + t) - d(z,w), 04 t< @(z).
Then, T has at least a fixed point (in ¥Y).

Proof. Let the function y:X—> [0,00) be defined as
y(x) = £(p(x)), xeX,
As (y(y,)) is decreasing if and only if (@(y,)) has such a pro-
perty, it is clear that (vi) holds with @ replaced by ¥ . Fur-
thermore, let g: [ 0,00) —> [0,00) be defined by the convention
g(t) = sup {820; £(s)<t}, t20.
The fact that g is well defined (and increasing on [0,00))
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results in essence from £(c0) = c0 . We also note the equiva-
lence
(4) f£(s)< t if and only if =< g(t)
obtained from the property
2(g(t))<t, t=0,
whioch is immediate in view of the fact that f is 1lsc on its ex-
istence domain. Now, if (y,) is a sequence in Y with (y(y,))
deoreasing, y, —> Y€ Y and y(y, )4t, neN, we have by (4),
9(’11)5 &(t), neX, oo that @(y)< g(t) whioh, again by (4), gi-
ves V(y)é t; in other words, (vii) also holds with @ replaced
by ¥ « In this case, Theorem 3 being applicable, given y in Y
there exists z in Y with
(2) a(y,z) = y(y) - y(s2)
(v) a(s,w)> y(e) -y(w) for all we¥, wiz,
Suppose = is not belonging to Tz and let w¢ Y(z,Tz) (which is
not empty, by (v)). We have by (b) plus the inequality (3)
a(s,w) > 2(a(=z,Ts)) - £(a(w,™w))z £(a(z,w) + d(w,T2)) ~
£(a(w,Ts) + D(Tz,Tw))
that is
£(D(Ts,?w) + a(w,Tz))> £(d(z,w) + a(w,Pz)) - £(a(z,w))
while .
0£4a(w,T2)< d(2,Ts) = ¢ (z)
which contradicts (viii)., So, z belongs to Tz and the result
follows. Q.E.D.

As a bagic particular case, let £(t) = ht, tZ 0, for some
h>1; then, clearly (viii) reduced to (1i) " with k = (h-1)/h
and Theorem 4 becomes Theorem 1 (the first part). Another par-
ticular case of prectical interest is £(t) = % - 1, tZ 0y that

it does not reduce to the preceding one is a consequence of the
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fact that if &,b> 0 satisfy (for some t(a,b)>0)

(b + t)<2(a + t) - a, 0£t <t(a,b)
then, a relation like

b£kea for some k in (0,1) independent of a, b
does not hold since, otherwise, its immediate consequence

f(ka) £ £(a) -~ a{with a, k sufficiently close to 1)
would produce a contradiction as it can be readily verified. Re-
turning to the first choice, it is clear that the case h — 1,
when (viii) becomes

(ix) for each z in Y not belonging to Tz there exists'w
in Y(z,Tz] with D(Tz,Tw) < d(z,w)
cannot be handled by these procedures so, it would be of inte-
rest to find out under what supplementary assumptions (const-
ructed after the model of (iii) ") conclusion of Theorem 4 con-
tinues to hold. An appropriate answer to this question is con~
tained in the following second main result of this note.

Theorem 5., Withthe same general assumptions like before,
let us admit that (ix) replaces (viii) and, in addition

(x) each sequence (z,) in Y with z & Tz , neN, (g(z,))
decreasing, D(Tzn,Twn)< d(zn,wn), ne N, eand D(Tzn,l‘wn)/d(zn.
wn) —> 1 for some (wn) in X fulfilling w e Y(zn,Tsz , n€N, has
a cluster point, '
Then, T has at least a fixed point (in Y).

Proof. Suppose by contradiction T has no fixed points in
Y. Given z,€ Y erbitrary fixed, let us apply Theorem 3 with @
introduced by the procedure we already indicated; there exists
then a point z4 in ¥ with

(a)y d(z,,24) £ 9(2,)) - @ (2)
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(), da(zy,m) >q(zq) -~ g(w) for all we¥, wis,.
Furthermore, given 5 in Y let us again apply Theorem 3 with ¢
replaced by 29:» 3 then, a %€ Y may be found with

(8), d(z4,3,)<2(p(5,) - P(s,))

(), d(sy,m)>2(P(z;) ~ @ (W) for all weY¥, wiz,,
and so on. By induction, we get a sequence (z,) in Y with gz ¢
. €T, nel, (?(zn)) deoreasing and (for each n€XN)

(a), d(z 4,302 0(qp(e, 4) - P(z)))

(b)Il d(zn,-)> n(g)(zn) - @(w)) for all weY, wEL,.
Let ('n) in Y be such that 'neY(zn,Tzn], n€N. We have by
(b),, plus (3)

a(z, ,w ) >n(a(z,,T2,) ~ a(w ,Tw )) 2 n(d(z,,w,) + d(w,,Tz )=

a(w,,Ts,) - D(Tz,,Tw )) = n(a(z,,w ) - D(?z,,Tw ), neN,
that is

D(Tz,,Tw ) > (1-1/n) d(z ,w ), neN,

In partioular, letting ('n) above be taken as in (ix) it fol-
lows from this relation that

1 - 1/n<D(Tzn,hn)/d(:n,wn)<1, nelN
end therefore D(Tz,,Tw )/d(z ,w )—> 1, which, in view of (x)
gives us (eventually on a subsequence)

5,—> % for some 2 in Y
(this last property being an immediate consequence of (vi)).
Agein by the evaluations (b) ,

d(:n.'!zn)‘d(w,'rv) + (1/n)d(zn.v), nel, wey¥
so that, passing to the limit as n —» o0 , one gets (taking
(vii) into account)

(4) 4(z,72)<d(w,™w), for all w in Y.
Combining this with (3) we have

a(z,w) + a(w,Pz)£ a(w,Tz) + D(Tz,Tw), we¥X(z,T2]

that is
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a(s,w) < D(T2,Tw), for each w in Y(z,Ts]
contradicting (ix). So, the supposition T has no fixed points is
false and this ends our argument. Q.E.D.

Now, clearly, (ix) extends (iii)* mo that, correspondingly,
Theorem 5 may be deemed as a generalization of Theorem 1 (the
second part). This fact, combined with the discussion following
the preceding statement allows us to conclude that the initial
program of extending Theorem 1 modulo the couple (ii)°°/(111)°
has been accomplished.

Concerning the basic T-convexity hypothesis (v) about‘ Y,
the following remarks are in order. Let J!(z) denote (for each
element z of Y) the (eventual empty) subset of all u in X with
the property Y(z,ul] is not emptyy; of course, in the linear norm-
ed case, this is nothing but the inward set of z with respect to
Y in the sense of Caristi [4], whose closed (-z)-translate con-
tains the tangent cone K!(z) of z with respect to Y (see, e.g.,
Penot [ 7]1) or, equivalently, the asymptotic direction set A.!(z)
of z with respect to Y in Browder’s sense [3]. It is now clear
that, if the range of T is in C(X), (v) may be clearly deduced
from the stronger hypothesis

(M)° p(Tz)(z)n J!(z) is not empty for each z in Y, not be-
longing to T2
(this fact being a consequence of the reasoning we used in the
proof of (1)) and consequently, our main results could be also
viewed as a straightforward (multivalued) extension of Caristi ‘s
fixed point theorems (cf. the above reference). It is interest-
ing to note at this moment that, still assuming (v) ~ is to be
satisfied, conclusion of Theorem 4 remains valid in case (viii)
would be replaced by the following hypothesis
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(vi11) ® for each z in Y, not belonging to Tz there exists
u in p(Tz)(z) end w in Y(z,u] such that

2(d(u, ™) + t)< £(d(z,w) + t) - &(z,w), O£t < p(s);
indeed, it suffices to observe that relation (b) of the above
quoted theorem

a(z,w) > £(a(z,72)) - 2(a(w,?w)), we Y, wsz
gives at once (if we take uc p(Tz)(z) and we Y(s,ul as in (viii) ")

a(z,w)> £(a(z,w) + d(w,u)) - £(a(w,u) + d(u,Tw))
that is,

£(d(u,™) + t)> £(d(z,w) + t) - d(z,w),
where 0<t = d(w,u) < ¢(z), contradicting (viii)* and proving our
claim, In the same context, condition (ix) being substituted by
the following one

(ix)° for each z in Y, not belonging to Tz there exists u
in p(?z)(z) and w in Y(z,ul] with d(u,?w)< d(z,w)
and (x) by '

(x)° each sequence (2;) 1n Y with s ¢?s , nc¥, (?(s‘))
decreasing, d(u,,Tw )< d(z,,w ), neX, and d(un.!‘wn)/d(ln.")-’
—> 1 for some (u ) in X and (w,) in Y wizh %‘3P(!'n)('n)'

w.e !(’n’%]' ncH, has a cluster point

conclusion of Theorem 5 will also remain valid, In fact, (b), of
that result would imply then (taking (w,) in X and (w,) in ¥ i»
such & way that u € p(Ts,)(s,), w,€¥(z ,u.], nc¥)

a(s,,w )>n (d(s,,?8)) - alw,,™w )2 ne(a(s ,w) + a(w;,u,)-

a(w,u) - a(uy,w ) = n(d(z, ,w,) - a(u,,w )), nc¥
and this immediately gives (taking (nn) and ('n) above as in
(1x) )

1-1/n< dkun,rwn)/d(zn,wn) <1, neX
that is, d(uy,T™w )/d(s ,w ;) —> 1. By (x)°, 5, —> s (eventuslly on

a subsequence) for some z€ Y, in which case, relation (4)
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(obtained by the same procedure as before) gives us for any
couple ug p(?s)(s), we ¥(z,ul,

a(z,w) + &(w,u)£d(w,u) + d(u,?w)
that is, d(z,w)< d(u,?w), a contradiction with respect to (ix)”,
completing the argument. Of course, when T is univalent, condi-
tioms (viti)’, (1x)°, (x) " will respectively coincide with
(viii),(ix) ,(x) bdut, in general, they are distinct even in the
linear normed case. Returning to the key condition (v) °, note
that an interpretation of it in terms of variable drops was in-
dicated by Turinioci [9] (see also the fixed point &pprosch used
in Kirk end Caristi [6]) which allows us to connect our state-
ments with those of Altman [1), based on a contractor directi-
ons viewpoint. It seems to be not without interest to formulate
a corresponding variant of the above theorems for metrizable u-
niform structures founded, e.g., on the appropriate variant of
Theorem 3 in these structures due to the author [11]; some as-
pects of this problem will be discussed elsewhere.
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