Previous |  Up |  Next

Article

References:
[1] L. AMERIO G. PROUSE: Uniqueness and almost-periodicity theorems for a nonlinear wave equation. Atti Accad. Naz. Lincei Rend Cl. Sci. Pis. Mat. Natur 46 (1969), 1-8. MR 0255993
[2] H. BREZIS: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam - London (1973). MR 0348562 | Zbl 0252.47055
[3] H. BREZIS: Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972), 1-168. MR 0428137 | Zbl 0237.35001
[4] T. CAZENAVE A. HARAUX: Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C.R.A.S. Paris, Ser. A, to appear (1984). MR 0750743
[5] C. M. DAFERMOS M. SLEMROD: Asymptotic behavior of non linear contraction semi-groups. J. Funct. Analysis 12 (1973), 97-106. MR 0346611
[6] C. M. DAFERMOS: Asymptotic behavior of Solutions of Evolution Equations. in Nonlinear Evolution Equations, M. G. Crandall editor, Academic Press (1978), 103-123. MR 0513814 | Zbl 0499.35015
[7] A. HARAUX: Comportement à l'infini pour une équation des ondes non linéaire dissipative. C.R.A.S. Paris, t. 287 Ser. A (1978), 507-509. MR 0512092
[8] A. HARAUX: Nonlinear evolution equations: global behavior of solutions. Springer Lecture Notes in Math. 841 (1981). MR 0610796 | Zbl 0461.35002
[9] A. HARAUX: Almost periodic forcing for a wave equation with a nonlinear. local damping term, Proc. Roy Soc. Edinburgh, 94 A (1983), 195-212. MR 0709715 | Zbl 0589.35076
[10] A. HARAUX: On a uniqueness theorem of L. Amerio and G. Prouse. to appear in Proc. Roy. Soc. Edinburgh. Zbl 0555.35090
[11] A. HARAUX: Stabilization of trajectories for some weakly damped hyperbolic equations. to appear. Zbl 0535.35006
[12] A. HARAUX H. CABANNES: Almost periodic motion of a string vibrating against a straight, fixed obstacle. Nonlinear Analysis, T.M.A., 7 (2) (1983), 129-141. MR 0688769
[13] A. HARAUX M. KIRANE: Estimations $C^1$ pour des problèmes paraboliques semi-linéairesm. Ann. Fac. Sci. Toulouse 5 (1983). MR 0747194
[14] M. KIRANE G. TRONEL: Effet régularisant $C^{\infty}$ dans les problèmes paraboliques. to appear.
[15] M. SCHATZMAN: A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980), 138-191. MR 0560941 | Zbl 0497.73059
[16] G. F. WEBB: A reaction-diffusion system for a deterministic diffusive epidemic. J. Math. Anal, and Appl. 84 (1981), 150-161. MR 0639529
Partner of
EuDML logo