[1] L. AMERIO G. PROUSE:
Uniqueness and almost-periodicity theorems for a nonlinear wave equation. Atti Accad. Naz. Lincei Rend Cl. Sci. Pis. Mat. Natur 46 (1969), 1-8.
MR 0255993
[2] H. BREZIS:
Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam - London (1973).
MR 0348562 |
Zbl 0252.47055
[4] T. CAZENAVE A. HARAUX:
Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C.R.A.S. Paris, Ser. A, to appear (1984).
MR 0750743
[5] C. M. DAFERMOS M. SLEMROD:
Asymptotic behavior of non linear contraction semi-groups. J. Funct. Analysis 12 (1973), 97-106.
MR 0346611
[6] C. M. DAFERMOS:
Asymptotic behavior of Solutions of Evolution Equations. in Nonlinear Evolution Equations, M. G. Crandall editor, Academic Press (1978), 103-123.
MR 0513814 |
Zbl 0499.35015
[7] A. HARAUX:
Comportement à l'infini pour une équation des ondes non linéaire dissipative. C.R.A.S. Paris, t. 287 Ser. A (1978), 507-509.
MR 0512092
[8] A. HARAUX:
Nonlinear evolution equations: global behavior of solutions. Springer Lecture Notes in Math. 841 (1981).
MR 0610796 |
Zbl 0461.35002
[9] A. HARAUX:
Almost periodic forcing for a wave equation with a nonlinear. local damping term, Proc. Roy Soc. Edinburgh, 94 A (1983), 195-212.
MR 0709715 |
Zbl 0589.35076
[10] A. HARAUX:
On a uniqueness theorem of L. Amerio and G. Prouse. to appear in Proc. Roy. Soc. Edinburgh.
Zbl 0555.35090
[11] A. HARAUX:
Stabilization of trajectories for some weakly damped hyperbolic equations. to appear.
Zbl 0535.35006
[12] A. HARAUX H. CABANNES:
Almost periodic motion of a string vibrating against a straight, fixed obstacle. Nonlinear Analysis, T.M.A., 7 (2) (1983), 129-141.
MR 0688769
[13] A. HARAUX M. KIRANE:
Estimations $C^1$ pour des problèmes paraboliques semi-linéairesm. Ann. Fac. Sci. Toulouse 5 (1983).
MR 0747194
[14] M. KIRANE G. TRONEL: Effet régularisant $C^{\infty}$ dans les problèmes paraboliques. to appear.
[15] M. SCHATZMAN:
A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980), 138-191.
MR 0560941 |
Zbl 0497.73059
[16] G. F. WEBB:
A reaction-diffusion system for a deterministic diffusive epidemic. J. Math. Anal, and Appl. 84 (1981), 150-161.
MR 0639529