[1] S. AGMON A. DOUGLIS L. NIRENBERG:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II. Comm. Pure Appl. Math. 12 (1959), 623-727, 17 (1964), 35-92.
MR 0162050
[2] P. M. ANSELONE R. ANSORGE:
Compactness principles in nonlinear operator approximation theory. Number. Funct. Anal. Optimiz. 1 (1979), 589-618.
MR 0552242
[3] H. BREZIS: Reraarque sur l'article précedent de F. Murat. J. Math. pures et appl. 60 (1981), 321-322.
[4] M. FEISTAUER J. NEČAS:
On the solvability of transonic potential flow problems. Z. für Analysis und ihre Anwendungen (to appear).
MR 0807140
[5] S. FUČÍK A. KRATOCHVÍL J. NEČAS:
Kačanov-Galerkin method. Comment. Math. Univ. Carolinae 14 (1973), 651-659.
MR 0365300
[6] R. GLOWINSKI:
Lectures on Numerical Methods for Nonlinear Variational Problems. Springer-Verlag Heidelberg 1980.
MR 0597520
[7] R. GLOWINSKI O. PIRONNEAU: On the computation of transonic flows. In: H. Fujita (Ed.): Functlonal Analysis and Numerical Analysis, Japan Society for the Promotion of Science, 1978.
[8] J. MANDEL:
On an iterative method for nonlinear variational inequalities. Numer. Funct. Anal. Optimiz. (Submitted).
MR 0855440 |
Zbl 0631.65070
[9] N. G. MEYERS:
An $L^p$ estimate for the gradient of solutions of second order elliptic divergence equations. Ann. S.N.S. Pisa 17 (1963), 189-206.
MR 0159110
[10] P. MURAT: L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$. J. Math. pures et appl. 60 (1981), 309-321.
[11] J. NEČAS:
Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967.
MR 0227584
[12] J. NEČAS I. HLAVÁČEK:
Solution of Signorini's contact problem in the deformation theory of plasticity by secant modulus method. Apl. Mat. 28 (1983), 199-214.
MR 0701739