Previous |  Up |  Next

Article

References:
[1] L. AGUINALDO K. SCHMITT: On the boundary value problem $u" + u = \alpha u^ - + p(t), u(0) = 0 = u(\pi)$. Proc. Amer. Math. Soc. 68 (1978), 64-68. MR 0466707
[2] A. CANADA P. MARTINEZ-AMORES: Periodic solutions of nonlinear vector ordinary differential equations of higher order at resonance. Nonlinear Anal. 7 (1983), 747-761. MR 0707083
[3] A. CANADA P. MARTINEZ, AMORES: Solvability of some operator equations and periodic solutions of nonlinear functional differential equations. J. Differential Equations 48 (1983), 415-429. MR 0715694
[4] A. CANADA P. MARTINEZ, AMORES: Periodic solutions of neutral functional differential equations. in "Equadiff 82", Knobloch and Schmitt ed., Lecture Notes in Math. n° 1017, Springer, Berlin, 1983, 115-121. MR 0726575
[5] A. CASTRO: A two point boundary value problem with jumping nonlinearities. Proc. Amer. Math. Soc. 79 (1980), 207-211. MR 0565340 | Zbl 0439.34021
[6] S. FUČÍK: Boundary value problems with jumping nonlinearities. Časopis pěstov. mat. 101 (1976), 69-87. MR 0447688
[7] S. FUČÍK: Solvability of Nonlinear Equations and Boundary Value Problems. Reidel, Dordrecht, 1980. MR 0620638
[8] J. MAWHIN: Topological Degree Methods in Nonlinear Boundary Value Problems. Regional Confer. Series in Math. n° 40, Amer. Math. Soc., Providence, 1979. MR 0525202 | Zbl 0414.34025
[9] J. R. WARD: Asymptotic conditions for periodic solutions of ordinary differential equations. Proc. Amer. Math. Soc. 81 (1981), 415-420. MR 0597653 | Zbl 0461.34029
[10] J. R. WARD: Existence for a class of semilinear problems at resonance. J. Differential Equations 45 (1982), 156-167. MR 0665993 | Zbl 0515.34003
Partner of
EuDML logo