[1] H. ANDRÉKA T. GERGELY I. NÉMETI I. SAIN: Theory norphisms. Stepwise refinement of program specification. Representation of knowledge, and Cylindric algebras, preprint 1980.
[2] H. ANDRÉKA I. NÉMETI:
Dimension complemented and locally finite cylindric algebras are elementarily equivalent. Algebra Universalis 13 (1981), 157-163.
MR 0631552
[3] G. BIRKHOFF J. D. LIPSON:
Heterogeneous algebras. J. Comb. Theory 8 (1970), 115-133.
MR 0250887
[4] G. GRÄTZER:
Universal Algebra. Springer, Berlin 1979.
MR 0538623
[5] L. HENKIN:
Relativization with respect to formulas and its use in proofs of independence. Compositic Math. 20 (1968), 88-106.
MR 0234812 |
Zbl 0155.02301
[6] L. HENKIN J. D. MONK A. TARSKI:
Cylindric Algebras. Part I, North-Holland, Amsterdam 1971.
MR 0781929
[7] L. HENKIN J. D. MONK A. TARSKI H. ANDRÉKA I. NÉMETI:
Cylindric Sat Algebras. Lecture Notes in Math. 803, Springer, Berlin 1981.
MR 0639151
[8] S. MAC LANE: Catagories for the Working Mathematician. Springer, Berlin 1971.
[9] I. NÉMETI:
Some constructions of cylindric algebra theory applied to dynamic algebrat of programs. Computation. Linguistics and Computer Languages 14 (1980), 43-65.
MR 0626260
[10] I. NÉMETI: Personal communication.
[11] A. PRELLER:
On the relationship between the classical and the categorical direct product of algebras. Indag. Math. 30 (1968), 512-516.
MR 0246809
[13] W. TAYLOR:
Characterising Malcev conditions. Algebra Universalis, 3 (1973), 351-397.
MR 0349537
[14] P. ZLATOŠ:
On conceptual completeness of syntactic-semantical systems. preprint 1983.
MR 0811003