Previous |  Up |  Next

Article

References:
[1] H. ANDRÉKA T. GERGELY I. NÉMETI I. SAIN: Theory norphisms. Stepwise refinement of program specification. Representation of knowledge, and Cylindric algebras, preprint 1980.
[2] H. ANDRÉKA I. NÉMETI: Dimension complemented and locally finite cylindric algebras are elementarily equivalent. Algebra Universalis 13 (1981), 157-163. MR 0631552
[3] G. BIRKHOFF J. D. LIPSON: Heterogeneous algebras. J. Comb. Theory 8 (1970), 115-133. MR 0250887
[4] G. GRÄTZER: Universal Algebra. Springer, Berlin 1979. MR 0538623
[5] L. HENKIN: Relativization with respect to formulas and its use in proofs of independence. Compositic Math. 20 (1968), 88-106. MR 0234812 | Zbl 0155.02301
[6] L. HENKIN J. D. MONK A. TARSKI: Cylindric Algebras. Part I, North-Holland, Amsterdam 1971. MR 0781929
[7] L. HENKIN J. D. MONK A. TARSKI H. ANDRÉKA I. NÉMETI: Cylindric Sat Algebras. Lecture Notes in Math. 803, Springer, Berlin 1981. MR 0639151
[8] S. MAC LANE: Catagories for the Working Mathematician. Springer, Berlin 1971.
[9] I. NÉMETI: Some constructions of cylindric algebra theory applied to dynamic algebrat of programs. Computation. Linguistics and Computer Languages 14 (1980), 43-65. MR 0626260
[10] I. NÉMETI: Personal communication.
[11] A. PRELLER: On the relationship between the classical and the categorical direct product of algebras. Indag. Math. 30 (1968), 512-516. MR 0246809
[12] J. SHOENFIELD: Mathematical Logic. Addison-Wesley, Reading, Mass. 1967. MR 0225631 | Zbl 0155.01102
[13] W. TAYLOR: Characterising Malcev conditions. Algebra Universalis, 3 (1973), 351-397. MR 0349537
[14] P. ZLATOŠ: On conceptual completeness of syntactic-semantical systems. preprint 1983. MR 0811003
Partner of
EuDML logo