[1] W. ARENDT P. R. CHERNOFF T. KATO:
A generalization of dissipativity and positive semigroups. J. Operator Theory, 8 (1982), 167-180.
MR 0670183
[2] V. BARBU:
Nonlinear semigroups and differential equations in Banach spaces. Bucuresti/Leyden, 1976.
MR 0390843 |
Zbl 0328.47035
[3] HR. N. BOJADZIEV:
Unbounded generators of positive semigroups on $B^*$-algebras. C. R. Acad. Bulgare Sci., 35 (1982), N. 8, 1033-1036.
MR 0687397 |
Zbl 0513.47026
[4] O. BRATTELI D. W. ROBINSON:
Positive $C_0$ semigroups on $C^*$ -algebras. Math. Scand., 49 (1981), 259-274.
MR 0661895
[5] O. BRATTELI T. DIGERNES D. W. ROBINSON:
Positive semigroups on ordered Banach spaces. J. Operator Theory, 9 (1983), 371-400.
MR 0703815
[6] N. DUNFORD J. T. SCHWARTZ: Linear Operators, Part I. N. Y., 1958.
[7] E. B. DYNKIN: Markovskie processi. Moskva, 1963. (In Russian, English translation 1965.)
[8] D. E. EVANS H. HANCHE-OLSEN:
The generators of positive semigroups. J. Func. Anal., 32 (1979), 207-212.
MR 0534674
[9] W. FELLER:
The general diffusion operator and positivity preserving semigroups in one dimension. Ann. of Math., 60 (1954), 417-436.
MR 0065809 |
Zbl 0057.09805
[10] N. HASEGAWA:
On contraction semi-groups and (di)-operators. J. Math. Soc. Japan, 18 (1966), 209-302.
MR 0201984 |
Zbl 0149.10301
[12] R. H. MARTIN, Jr.:
Nonlinear operators and differential equations in Banach spaces. N. Y., 1976.
Zbl 0333.47023
[13] R. S. PHILLIPS:
Semigroups of positive contraction operators. Czechoslovak Math. 3., 12 (1962), 294-313.
MR 0146675
[14] JEAN-PIERE ROTH:
Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues. Ann. Inst. Fourier (Grenoble), 26 (1976), N.4, 1-97.
MR 0448158
[15] K. SATO:
On the generators of non-negative contraction semigroups in Banach lattices. J. Math. Soc. Japan, 20 (1968), 423-436.
MR 0231243
[16] K. DEIMLING:
Ordinary differential equations in Banach spaces. Lecture Notes in Math. 596, Berlin, 1977.
MR 0463601 |
Zbl 0361.34050
[17] R. H. MARTIN., Jr.: Invariant sets for evolution systems. International Conf. Diff. Equations (H. Antosiewicz, Ed.), N. Y., London, 1976.
[18] R. H. MARTIN, Jr.:
Invariant sets and a mathematical model involving semilinear differential equations. Nonlinear Equations in Abstract Spaces. N. Y., London, 1978.
Zbl 0453.34050
[19] M. NAGUMO:
Uber die Lage der Integralkurven gewöhnlicher Differentiallaichungen. Proc. Phys. Math. Soc. Japan, 24 (1942), 551-559.
MR 0015180
[20] R. M. REDHEFFER W. WALTER:
Flow-invariant sets and differential inequalities in normed spaces. Applicable Anal., 5 (1975), 149-161.
MR 0470401
[21] A. D. VENTZEL: On the boundary condition for multidimensional diffusion processes. Teor. verojatnostei i primenenija, 4 (1959), 172-185 (in Russian).
[22] P. VOLKMANN:
Über die Invarianz konvexer Mengen und Differentialgleichunge in einem normierten Raume. Math. Ann., 203 (1973), 201-210.
MR 0322305
[23] P. VOLKMANN:
Über die Invarianzsätze von Bony und Brazis in normierten Räumen. Archiv Math., 26 (1975), 89-93.
MR 0454238