Previous |  Up |  Next

Article

References:
[1] M. G. Arsove: Functions representable as differences of subharmonic functions. Trans. Amer. Math. Soc. 75 (1953), 327-365. MR 0059416 | Zbl 0052.33301
[2] H. Bauer: Šilovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier 11 (1961), 89-136. MR 0136983 | Zbl 0098.06902
[3] M. Brelot: Lectures on potential theory. Tata Inst. of Fundamental Research, Bombay 1960. MR 0118980 | Zbl 0098.06903
[4] G. Choquet: Les noyaux réguliers en théorie du potentiel. C. R. Acad. Sci. Paris 243 (1956), 635-638. MR 0080758 | Zbl 0073.32104
[5] C. Constantinescu A. Cornea: Potential theory on harmonic spaces. Springer - Verlag 1972. MR 0419799
[6] B. Fuglede: On the theory of potentials in locally compact spaces. Acta Math. 103 (1960), 139-215. MR 0117453 | Zbl 0115.31901
[7] M. Kishi: Selected topics from potential theory, chap. I: Lower semicontinuous function kernels. Kobenhavns Universitets Matematisk Inst. Publicationsseries 1978, N° 5.
[8] J. Král I. Netuka J. Veselý: Teorie potenciálu IV. (mimeographed lecture notes in Czech), SPN Praha 1977.
[9] N. S. Landkof: Osnovy sovremennoj teorii potenciala. Moskva 1966.
[10] I. Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslovak Math. J. 25 (1975), 309-316. MR 0382690 | Zbl 0309.31019
[11] N. Ninomiya: Sur un principe du maximum pour le potential de Riesz-Frostman. J. Math. Osaka City Univ. 13 (1962), 57-62. MR 0162954
[12] M. Ohtsuka: On the potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-I, 25 (1961), 135-352. MR 0180695
[13] R. Wittmann: A general continuity principle. Comment. Math. Univ. Carolinae 25 (1984), 141-147. MR 0749122 | Zbl 0562.31008
Partner of
EuDML logo