Previous |  Up |  Next

Article

References:
[1] M. A. KRASNOSEL'SKIĬ: Topological methods in the theory of nonlinear integral equations. in Russian, Moscow, 1956.
[2] M. KUČERA: A new method for obtaining eigenvalues of variational inequalities. Branches of eigenvalues of the equation with the penalty in a special case. Časopis pro pěstování matematiky 104 (1979), 295-310. MR 0543230
[3] M. KUČERA: A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory. Časopis pro pěstování matematiky 104 (1979), 389-411. MR 0553173
[4] M. KUČERA: A new method for obtaining eigenvalues of variational inequalities: Operators with multiple eigenvalues. Czechoslovak Math. Journ. 32 (107) (1982), 197-207. MR 0654056
[5] M. KUČERA: Bifurcation points of variational inequalities. Czechoslovak Math. Journ. 32 (107) (1982), 208-226. MR 0654057
[6] M. KUČERA J. NEČAS J. SOUČEK: The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelman theory. In: Nonlinear Analysis, Academic Press, New York - San Francisco - London, 1978. MR 0513782
[7] E. MIERSEMANN: Verzweigungsprobleme für Variationsungleichungen. Math. Nachr. 65 (1975), 187-209. MR 0387843 | Zbl 0324.49035
[8] E. MIERSEMANN: Über höhere Verzweigungepunkte nichtlinearer Variationsungleichungen. Math. Nachr. 85 (1978), 195-213. MR 0517651
[9] E. MIERSEMANN: Höhere Eigenwerte von Variationsungleichungen. Beiträge zur Analysis 17 (1981), 65-68. MR 0663272 | Zbl 0475.49016
[10] E. MIERSEMANN: Ein Beulproblem für die eingespannte Kreisplatte mit Unterstützungen. Z. Angew. Math. Mech. 57 (1977), 717. Zbl 0445.73036
[11] E. MIERSEMANN: Eigenvalue problems for variational inequalities. In: Contemporary Mathematics Vol. 4 (1981) 25-43, Providence, Rhode Island. MR 0641224 | Zbl 0474.49012
Partner of
EuDML logo