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ON HIGHER EIGENVALUES OF VARIATIONAL INEQUALITIES
E. MIERSEMANN

Abstract: A new criterion for the existence of eigenva-
lues of a class of unilateral eigenvalue problems is given.
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1. Introduction. ILet H be a real Hilbert space and KCH

& closed and convex cone with its vertex at zero, that is, a
set such that t ucK for all t>0 and for all u€K. Further-
more, we assume that K is nonempty.
By a(u,v) and b(u,v) we denote bounded, real and symmetric bi-
linear forms defined on H.

In this paper we make the following essumptions:
(1) There exists & ¢>0 such that a(v,v)z ¢ livll 2 for all
veH, and
(2) 1b(u,v) is completely continuous on H.

We are interested in the eigenvalue prodblem for the va-

riaticnal inequality
(3) uck: a(u,v-u) 2 @ b(u,v-u) for all veK,

where w is a real eigenvalue parameter. That is, we look for

nontrivial solutions u of (3) and for associated eigenvalues,
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In [3,4], there was proved that the prodlem (3) has infi-
nitely many eigenvelues if for the eigenvectors of the equation

(4) ucH: a(u,v) = Ab(u,v) for all veH

certain conditions are fulfilled. Partioularly, one has to as-
sume that infinitely many eigenvectors of (4) lie in the inte-
rior of the cone K.

There exist also higher eigenvelues if no eigenveotor of (4) be-
longs to the cone, of, [8,9]. An application to the clamped cir-
cular plate is given in [10].

For further results, applications and references with reaspect

to (3) see [2,11] . We mention that in [5], there was first pro-
ved & result for the nonsymmetric case.

In this paper we give a variational approach for the proof
of existence of eigenvalues of the inequality (3). Furthermore,
one obtains lower and upper bounds of these gigenvaluos it the
eigenvalues of the equation (4) are known.

To simplify the presentation, we consider here the problem
(3) which is linear with respect to the operators. The results
stay true for nonlinear problems of type

(5) wekK: (£°(uw),v-u) = (4,(3 ‘(u),v=u) for all vek,

Here £°, g° are the first G&teaux derivatives of functionals £,
8 defined on H, Under certain assumptions for f, g, of, [8], the
eigenvellueu which we obtain, are also points of bifurcation of
associated nonlinear inequalities of type (5) if we assume that
(3) is the linearization of (5).

In the case of equations it was proved in [1] under suit-
able assumptions that eigenvalues of the linearized problem

are also points of bifurcation and vice versa.
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For variational inequalities one can check easily under cert-
ain agsumptions on £ and g that a point of bifurcation is almso
an eigenvalue of the associated linear problem. But not every
eigenvalue of the linear problem is a point of bifurecation, as
the following easy example shows.

Set £(x) = 1/2 14 + x5 - x,33, &(x) = 1/2 (£ + x3)

where x = (x4,x,) and K = 51622/112 0}. The numbver “o *

is an eigenvalue of the associated linear problem (3) with
a(x,y) = X379 + 2X,5,, b(x,y) = X474 + X,¥,. One can easily
check that a, is no point of bifureation of (5), that means,
thers does not exist a sequence of solutions x(2)4 0 and asmo-
ciated eigenvalues “(n) ot (5) such that x(® —» 0 ana («-(‘)—)
—>2 88 n—> .,

2, Some known resulis. We assume that the equation (4)
possesses at least n+1 positive eigenvalues O< A4 £ Azé...
ces £ A, & A 40 Lot uyye.0,u, U, e the associated eigen~
veotors which are orthonormal with respect to a(u,v).

Set E = linear mull {uy,...,u,;} end B} = {ucE /a(u,u) = s},
0<s8< 00 . By P we denote the projection operator of H onto
En which is assumed to be orthogonal with respect to a(u,v).

Definition 1 (1], The set A is said to be contractible

within a set R, if there exists & homotopy H(t,u), 0&t £1,
ug A, such that H(O,u) = u, H(t,u)e R for all 04t &1 and for
all ue A, and {H(1,u)/ue A} consists of one element of R.

Set K® = {veK/a(v,v) = 8}, 0<B8 < 0O «

Definition 2 [8). N is the class of all compact sets
FcH such that
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8) rcx!,
b) <there exists an o¢ > O such that

-1
u,'i'% b(u,u) 2 Apey * %

where o does not depend on F,

¢) ¥ 1s not contractible within the set R = {ue& H/Pus 0},
This definition of N depends on n. Here we have used '

slightly different notations as in [ 8], in partiocular, Defini-

tion 5.1 b) in [ 8] was changed.

If N4, then there existe u such that

b(u,u) = sup min_ b(w,w)
! FeN weF =~ '
which is also a solution of the variational inequality, of. [8].
The proof is based on the topological technique due to Krasno-

sel ‘skil [1]. More precisely we have the
Theorem. Assume Ni: @, then there exists an eigenvalue “n

of the inequality (3) with

A
n+1
Ap £ n & .
1 +cc .7(.!1_’.1

Furthermore, if the eigenspace to ﬂ,n does not belong to the
cone K, then there exists an elgenvalue “n of (3) such that we

have A, < @, in the previous inequality.

The second assertion of the Theorem says that one obtains
in thiQ general case an eigenvalue of the variational inequali-
ty which is not eigenvalue of the associated equation (4).

The inequality 6 Z A}, + « , where o = b(u,u), follows di-
rectly from our definition of N, The estimate ¢ £ ﬂ-;‘ one ob-
tains in the same maaner as in [8). Since o = ', of. [8],
we get the inequality of the Theorem.
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One sufficient esondition for N<4¢ was given in [8,9]:
Let B1 CH be a closed subspace with B1c K. We consider the e-

quation

ueH;: a(u,v) = K b(u,v) for all veH,
and assume that there exist at least n positive eigenvalues.

Lemma 1 [7,8]. If Ky < 2.4, then Ng.

3. A new oriterion for N4@, Set
K ={ue E /a(u,u) < 1} and
V={ve Ei'/uwex for all ue¢ l1}
where B‘: is the orthogonal eomplement to En‘

Lemma 2, We have Ni=@ if the following assumptions are
fulfilleds 1) There exists & ve&EL with usveK for all uc ',

2) There exists & 7 > O such that
1;1 - }\;}_1 z +Vm‘1§lxr(a,;}_1 + 1 )a(v,v) - b(v,v)

Ppoof. Observe first that for an arbitrary fixed veV

P { QY / for ell ue.En, where

Va(u+v,u+v

E; =- {uskn / a(u,u)=1}, is not contractible within R sin-

ce E; is within R homotopically removable in F by the homotopy

H(t,u) = ¥ __ o4t 4.
\/a(u«btv,nﬂw

It remains to show that b) of Definition 2 is fulfilled under

the assumptions of Lemma 2, Set

u+t+v

Va(utv,utv) :

We get
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{v(a,u) + v(v,M}z M;‘+ B(v,v)}.

1+u(v,v) +l~( v,V
The lexma is proved if there exists & veV such that

{2'1 + b(v.v)}?.: ﬁ.‘” +m .

»(w,¥) =

1+s(v v)
'he last inequality can be written as

-1 = 7Ln+1 7+ (1 +1 * 1 )a(v,v) = b(v,v).

There exisis & solution of the minimum problem in b) since V is

slosed and ecomvex and since we have

bv,v) £ 1.'11 a(v,v) for all ve¢ E‘L
relying on
-1 b(v,v
a‘n+1 -v -ix\{og -‘—6-'-:;} . Q.E.D.

Corollary. Assume that 9\. +1 hes the multiplicity p, that
is, we have A < A .4 = .c0 = ‘a'n-rp < 'ﬂ'n+p+
sume that for an eigenvector v, from the linear hull fu 4sec.

1° Further we asg-

eeeslp, o} the inclusion u+v ¢ K is true for ell uc u'. Them
N4g.

Proof. By setting v = v, into the right hand side of the

inequality of Lemma 2 we obtain
4+ (A7) + m)alvg,v,) = ALY, alvg,v,) = 7+ 7 8(v,,7,).
The inequality in 2) of Lemma 2 is fulfilled for a sufficient-
1y smgll 7 > O since we have assumed that An < a’n+1'
Q.E.D,

The corollary covers some results of M. Kulera [2,3,4]
concerning the symmetric case,
It follows from this corollary that there exist eigenvalues of
the variational inequality (3) which are not eigenvalues of the

- 662 -



sorresponding equation, if eigenvectors lie in the interior ) of
of the cone K.

Dr. M. Kulera pointed ow: to me that the assumptions of
Lemma 2 are also satisfied if there exists an eigenvector Yo €
€ 0 K (the boundary of K) corresponding to .Ann and there ex-
:'. This follows wince (1-'t)v° + tvy, 0<t <1, 'sa
tisfies 1) and for t small it satisfies also 2) of Lemma 2,

ists v,c K°nE

In order to illustrate the Theorem we consider a problem
for the clamped cirocular plate [10]l. Let

Q. ={xeRr? / xf + x§<32}, O<R< 00,
and K the cone
K -{veﬂz’z(ﬂn) / v(x)Z 0 for xeA, v(x)<0 for x6Bi,

By A, B we denote subsets of the anmulus

iz /B< (x12 + x%)’la

<R}, O<R;<R.
The compressive forces are acting in the inner normal direction.

The inequality modelling this problem is given by
ueks f‘.QR Qduld(v-u)ax > a,fnk{ ux1 (v-'u)x1 + ‘ﬁz("u)ng ax

for all veK.
Let T, be the zeros of the Bessel functions Je,,(x), “= 1,2,..0,
which are ordered according to their magnitudes <4< Top<eoe
eos (7 = 3.832, T, = 5,136, Ty - 6¢380,000)0

Prom the Theorem and Lemma 1 it follows, provided AuBap#
and /T, 4<Ry/R, that there exists an eigenvalue A, of the
sbove variational inequality with v2/B%< 4,4 v2/R2.

From Lemma 2 it follows that there exist infinitely many
eigenvalues which are not eigenvalues of the associated equati-
on, if A B is a nonempty set of finitely many points of fp.
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This result obtained also M. Kulers [3,4] from his theory of va-
riational inequalities based on a penalty techniqus.

I would like to thank Dr. Milan Kudera for several disous-
sions from which my note was initiated and for helping me to cla-
rify the presentation of this paper.
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