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COMMENTATÎONES MATHEMATiCAE UNiVERSiTATIS CAROLINAE 
24,4 (1983) 

ON HIGHER EIGENVALUES OF VARIATIONAL INEQUALITIES 
E. MIERSEMANN 

Abstract: A new cr i ter ion for the existence of eigenva­
lues of a c lass of uni latera l eigenvalue problems i s giTen. 

Key words: Variational i n e q u a l i t i e s , eigenvalue problems, 
plat$ buckling. 

Class i f i cat ion: 49H05, 73H10 

1. Introduction. Let H be a real Hilbert space and KCH 

a closed and convex oone with i t s Tertex at zero, that i s f a 

set such that t ucK for a l l t:>0 and for a l l u € K. Further­

more f we assume that K i s nonempty. 

By a(u fT) and b(ufT) we denote bounded, real and symmetric b i ­

l inear forms defined on H. 

In th i s paper we make the following assumptions: 

(1) There e x i s t s a e>0 such that a(TfT)2* c II• II for a l l 

T € H f and 

(2) b(ufT) i s completely continuous on H. 

We are interested in the eigenvalue problem for the Ta-

r iat ional inequality 

(3) ucK: a(u fT-u) z (** b(u,T-u) for a l l T S Kf 

where (A, is a real eigenvalue parameter. That is, we look for 

nontriTial solutions u of (3) and for associated eigenTalues. 
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In r3f439 there was proTed that the problem (3) has infi­

nitely many eigenvalues if for the eigenTeotors of the equation 

(4) ucHi a(u9T) • A D ( U 9 T ) for all T C H 

certain conditions are fulfilled. Particularly, one has to as­

sume that infinitely many eigenTeotors of (4) lie in the inte­

rior of the oone K. 

There exist also higher eigenvelues if no eigenreotor of (4) be-

long0 to the cone, of. £899J« An application to the clamped cir­

cular plate is given in {.101. 

For further results9 applications and references with respect 

to (3) a«e 12,11.3 • We mention that in 151$ there was first pro-

Ted a result for the nonsymmetrio case. 

In this paper we give a variational approach for the proof 

of existence of eigenvalues of the inequality (3). Furthermore, 

one obtains lower and upper bounds of these eigenvalues if the 

eigenvalues of the equation (4) are known. 

To simplify the presentation, we consider here the problem 

(3) which is linear with respect to the operators. The results 

stay true for nonlinear problems of type 

(5) usK* (f#(u)9T-u)2:^(g
#(u)9T-u) for all TeK. 

Here f #9 g' are the first Gateaux deriTatiTes of functionals ff 

g defined on H. Under oertain assumptions for f, g9 cf. 161$ the 

eigenvalues which we obtain, are also points of bifurcation of 

associated nonlinear inequalities of type (5) if we assume that 

(3) is the linearisation of (5). 

In the case of equations it was proved in CI] under suit­

able assumptions that eigenvalues of the linearized problem 

are also points of bifurcation and vice versa. 
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For variational inequalities one can oheck easily under cert­

ain assumptions on f and g that a point of "bifurcation Is also 

an eigenvalue of the associated linear problem. But not erery 

eigenvalue of the linear problem is a point of bifurcation, as 

the following easy example shows. 

Set f(x) - 1/2 xf + x| - x-jxff g(x) - 1/2 (xf + x|) 

where x » (x-j fx>) and K » {x€R /x*j£ 0}» The number ftQ » » 

is an eigenvalue of the assooiated linear problem (3) with 

a(xty) • x-jy-j + 2*2*2» *(***) • x1y1 + *Z*2* 0*0 oial •*»ilJF 

cheek that (LQ is no point of bifurcation of (5)t that meansf 

there does not exist a sequence of solutions x*n'4» 0 and asso­

ciated eigenvalues < * ( B ) of (5) suoh that x ( a ) — ^ 0 and ̂ n >~* 

— > 2 as a. — > 00 . 

2. Some known results* We assume that the equation (4) 

possesses at least n+1 positive eigenvalues 0 < 21., .£ A 2 *S ... 

• ••£ A.n^^n+1* Let ui»#**tu
nt ^+1

 be *ne associated eigen-

Teotors which are orthonormal with respeot to a(utv)« 

Set B n « linear hull K tt.- t • • • f u ^ and Bjj » {ueBn/a(aftt) « s}f 

0< s < co • B y P w e denote the projection operator of H onto 

E Q whioh is assumed to be orthogonal with respeot to a(utT). 

Definition 1 £13. The set 1 Is said to be contractible 

within a set R, if there exists a homo to py H(ttu)t 0.6t-61t 

tt€At suoh that H(Otu) » u, H(ttu)eR for all 0^t<61 and for 

all ucA f and {H(1,u)/u€A) consists of one element of R. 

Set K8 » <TeK/a(TfT) » m}9 0 < s < oo • 

Definition 2 18). H is the class of all compact sets 

F c H suoh that 
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») I 'd . 1 , 

To) th«r» wd.«t« an 06 > 0 suoh that 

jrinp b(u,u) ^ A ; ; . + cc 

where oC does not depend on F, 

o) I is not contract!Die within the set R » -fua H/Pu4»0}. 

This definition of H depends on n. Here we have used 

slightly different notations as in C 83, in particular, Defini­

tion 5.1 b) in £8] was changed. 

If H4»09 then there exists u suoh that 

b(u9u) m sup min b(w,w)f 
FGH «rsF 

which is also a solution of the Tariational inequalityf of. 18]. 

The proof is based on the topological teohnique due to Krasno-

sel'skil [13. More preoisely we haTe the 

Theorem. Assume H4*0t then there exists an eigenralue (Htn 

of the inequality (3) with 

.furthermore, if the eigenspaoe to A n does not belong to the 

oone Kf then there exists an eigemralue ^un of (3) suoh that we 

haTe &n < p n in the preTious inequality. 

The second assertion of the Theorem says that one obtains 

in this general case an eigenvalue of the Tariational inequali­

ty which 1B not eigenralue of the associated equation (4)* 

The inequality o 2 A ^ + ^ t where c • b(u9u), follows di­

rectly from our definition of H« The estimate o -£ A ~ one ob­

tains in the same manner as in £8]. Since c • <ct~ , of. £83, 

we get the inequality of the Theorem. 
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One sufficient oondition for *4»0 was given in C8,9Jt 

Let H-jC H be a closed subspace with E,c K. We consider the e-

quation 

ueH-,1 a(ufv) * K h(ufv) for all TCH-J 

and assume that there exist at least n positive eigenvalues. 

Lemma 1 L7.8J. If K^ < ^a+1 f then 14-0. 

3* A new cr i ter ion for 1*4*0. Set 

M1 • ixL€$n/*tufVL)£l} and 

V « * V € L B £ / U + V € K : for a l l u€M1J 

where B^ i s the orthogonal complement to B . 

Lemma 2 . We have H#s0 i f the following assumptions are 

fu l f i l l ed* 1) There exioto a v c B ^ w i t h u+v€K for a l l u&M1. 

2) There e x i s t s a 7} > 0 such that 

*n1 - *n+1 Z^ +
v f £ ( * n + 1 + * » ) • < • . • ) - * < • • • ) 

Ppoof. Ohserve first that for an arhitrary fixed v c ? 

f - -f . u*~ / for all u c E 1 ] , where 
17a(u+vfu+v

 n>f 

En " ̂ u e B n / a(ufu)»1$f is not eontraetible within R sin­

ce B1 is within R homotopically removable in P by the homo to py 

H(tfu) m *+** - , 04t£1. 

V*a(u+tvfu+tv 

It remains to show that b) of Definition 2 is fulfilled under 

the assumptions of Lemma 2. Set 
W » U+T 

Va(u+Tfu+r) 

We get 
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p ( W f W ) , 1 {h(utu) + e(TfT)}.? ] U n

1 + b(T tT)j. 
1 + * ( T , T ) 1+a(TtT) n 

The lemma l e pro Ted i f there ex ie te a T C V such that 

1 /-a-1 _*. v/ \l --. 1 -1 ( л ; 1 + ЪÍT.T)} 2 л ^ . + 1 
1+»(T,T) 

lie last Inequality can be written a. 

*; 1 - KU * n * < * ; + . + 1 >•<•.•> - »<•.•>• 
There e x i s t s a eolut ion of the minimum problem in b) since T i s 

elosed and eomrex and since we haTe 

© ( T . T ) & ^ a + 1 a(T tT) for a l l TG» a 

relying on 

a;+ 1 - sax Ifol] • Q*B^ 
tre&ivioj a<T»T> 

Oorollarr. Assume that & a + 1 hae the mult ip l ic i ty p. that 

i e t we have & a < 3 l a + 1 - . . . - A a + a < * t t + p + 1 . Further we as-

0uae that for an eigenvector TQ from the l inear hul l f ^ , . , , 
the inclusion H+T^C X i s true for a l l ueM . Then ••••^Чi-fpS 0 

1+0. 

Proof. By eetting T » T
Q
 into the right hand eide of the 

inequality of Lemma 2 we obtain 

n
 + (

*nll • n ) a ( T
o»

T
o

)
 - ̂ nll

 a
<
T
o'

T
o> " 1

 +
 1

 a ( T
o'V* 

The inequality in 2) of Lemma 2 is fulfilled for a sufficient­

ly small ij ;> 0 ainoe we haTe assumed that %n < A a + 1
« 

Q.E.D. 

The corollary covers some results of If. KuSera [2
t
3

t
4J 

concerning the symmetric case. 

It follows from this corollary that there exist eigenvalues of 

the Tariatlonal inequality (3) which are not eigenralnee of the 
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corresponding equation, if eigenvectors lie in the interior K* 

of the oone K. 

Dr. M. Kucera pointed otst to me that the assumptions of 

Lemma 2 are also satisfied if there exists an eigenvector v £ 

6 S K (the boundary of K) corresponding to **n+1 and there ex­

ists T-J€ K°n En. This follows winee (l-t)T0 «•• tr-j, 0< t<1, 'sm-

tisfies 1) and for t small it satisfies also 2) of Lemma 2. 

In order to illustrate the Theorem we consider a problem 

for the clamped circular plate 1101. Let 

X L R » 4 x e R 2 / x f + x|-cR2ff 0<R< 00 , 

and K the oone 

K -^TeHg 2^B} / •<*)£<> 'or x€Af T(X)-60 for x€Bj. 

By A, B we denote subsets of the annulus 

{x /B.^<(x% + x | ) 1 / 2 <R* f 0<R1<R. 

The compressive forces are acting in the inner normal direction. 

The inequality modelling this problem is given by 

uGKs / A UA(T-U)6X 2r XL i^L (T-U) + u_ (T-uKjdx 
<HR J&K ^ X-, "Xg Xg 

for all T€K. 

Let trn be Jbhe zeros of the Bessel functions J(t6(x), fA.» 1t2f...f 

which are ordered according to their magnitudes T-j < %2<**. 

... ( t1 - 3.832, r2 m 5.136, f^ - 6.380,...). 

Prom the Theorem and Lemma 1 it follows, provided AuB-f 0 

and KUI Tn+1 < R-j /R, that there exists an eigenTalue &n of the 

aboTe Tariational inequality with f2/fc2< ̂ n * ***/*?• 

From Lemma 2 it follows that there exist infinitely many 

eigenvalues which are not eigenvalues of the assoeiated equati­

on, if A B is a nonempty set of finitely many points of Jig. 
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This reeult obtained also M. KuSera £3»4J from hia theory of Ta­

xational inequalities based on a penalty technique. 

I would like to thank Br. Milan KuSera for eereral discus­

sions from which my note was initiated and for helping me to cla­

rify the preeentation of thie paper. 
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