Previous |  Up |  Next

Article

References:
[1] I. A. Bahtin: The existence of common flxed points for commutative sets of nonlinear operators. Functional Anal. Appl. 4 (1970), 76-77. MR 0267431
[2] R. DeMarr: Common fixed points for commuting contraction mappings. Pac. J. Math. 13 (1963), 1139-1141. MR 0159229 | Zbl 0191.14901
[3] K. Goebel W. A. Kirk: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35 (1972), 171-174. MR 0298500
[4] K. Goebel W. A. Kirk R. L. Thele: Uniformly Lipschitzian families of transformations in Banach spaces. Canad. J. Math. 26 (1974), 1245-1256. MR 0358453
[5] T. Hu: A common fixed point theorem for nonlinear operators in a Banach space. Tamkang J. Math. 8 (1977), 239-243. MR 0636943
[6] W. A. Kirk: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Israel J. Math. 17 (1974), 339-346. MR 0346605 | Zbl 0286.47034
[7] K. Kuratowskii: Topology Volume I. Academic Press, New York (1966). MR 0217751
[8] H. V. Machado: A characterisation of convex subsets of normed spaces. Kodai Math. Sem. Rep. 25 (1973), 307-320. MR 0326359
[9] S. A. Naimpally K. L. Singh: Fixed and common fixed points in convex metric space. preprint.
[10] R. D. Nussbaum: The fixed point index and fixed point theorems for k-set contractions. Ph.D. Dissertation, University of Chicago (1969). MR 2611623
[11] W. V. Petryshyn: Structure of fixed point sets of k-set contractions. Arch. Rational. Mech. Anal. 40 (1970/71), 312-328. MR 0273480
[12] B. N. Sadovskii: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 85-156. MR 0428132
[13] B. N. Sadovskii: A fixed point principle. Ғunctional Anal. Appl. 1 (1967), 151-153. MR 0211302
[14] W. Takahashi: A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep. 22 (1970), 142-149. MR 0267565 | Zbl 0268.54048
[15] L. A. Tallman: Fixed points for condensing multifunctions in metric spaces with convex structures. Kodai Math. Sem. Rep. 29 (1977), 62-70. MR 0463985
Partner of
EuDML logo