[1] I. A. Bahtin:
The existence of common flxed points for commutative sets of nonlinear operators. Functional Anal. Appl. 4 (1970), 76-77.
MR 0267431
[2] R. DeMarr:
Common fixed points for commuting contraction mappings. Pac. J. Math. 13 (1963), 1139-1141.
MR 0159229 |
Zbl 0191.14901
[3] K. Goebel W. A. Kirk:
A fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35 (1972), 171-174.
MR 0298500
[4] K. Goebel W. A. Kirk R. L. Thele:
Uniformly Lipschitzian families of transformations in Banach spaces. Canad. J. Math. 26 (1974), 1245-1256.
MR 0358453
[5] T. Hu:
A common fixed point theorem for nonlinear operators in a Banach space. Tamkang J. Math. 8 (1977), 239-243.
MR 0636943
[6] W. A. Kirk:
Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Israel J. Math. 17 (1974), 339-346.
MR 0346605 |
Zbl 0286.47034
[7] K. Kuratowskii:
Topology Volume I. Academic Press, New York (1966).
MR 0217751
[8] H. V. Machado:
A characterisation of convex subsets of normed spaces. Kodai Math. Sem. Rep. 25 (1973), 307-320.
MR 0326359
[9] S. A. Naimpally K. L. Singh: Fixed and common fixed points in convex metric space. preprint.
[10] R. D. Nussbaum:
The fixed point index and fixed point theorems for k-set contractions. Ph.D. Dissertation, University of Chicago (1969).
MR 2611623
[11] W. V. Petryshyn:
Structure of fixed point sets of k-set contractions. Arch. Rational. Mech. Anal. 40 (1970/71), 312-328.
MR 0273480
[12] B. N. Sadovskii:
Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 85-156.
MR 0428132
[13] B. N. Sadovskii:
A fixed point principle. Ғunctional Anal. Appl. 1 (1967), 151-153.
MR 0211302
[14] W. Takahashi:
A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep. 22 (1970), 142-149.
MR 0267565 |
Zbl 0268.54048
[15] L. A. Tallman:
Fixed points for condensing multifunctions in metric spaces with convex structures. Kodai Math. Sem. Rep. 29 (1977), 62-70.
MR 0463985