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COMMON FIXED POINTS FOR NONEXPANSIVE AND ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

-~

s A NATHPALLY®  K.L.SINGH.J . H. M. WHITFIELD®’

Abstract.

The main aim of the present paper is to prove the existence of common fixed
points for nonexpansive and asymptotically nonexpansive mappings in convex metric
spaces. Such spaces, introduced by Takahashi, include Banach spaces; and our
results generalize those of Bahtin, De Marr, Goebel and Kirk, Hu, Kirk, and

others.

Key Words and Phrases.

Convex metric space, nonexpansive and asymptotically nonexpansive mappings,

fixed points. ‘

Classification. 47H10, 52H25.

§0. Introduction.

In 1970, Takahashi [14] introduced a notion of convexity in metric spaces

(see Definition 0.1) and generalized some fixed-point theorems in Banach spaces.

*
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Subseq 1y, Machado [8], Tallman [15], and Naimpally and Singh [9], among
others, have studied convex metric spaces and fixed-point theorems. This paper

is a continuation of these investigations.

In Section 1, we prove common fixed-point theorems for nonexpansive mappings.
Section 2 deals with the existence of common fixed points for asymptotically
nonexpansive mappings. All of these are in the setging of convex metric spaces

and generalize or extend results in the Banach-space setting.

We begin with some definitions.

Definition 0.1. Let X be a metric space and I be the closed-unit interval.

A continuous mapping W:X x X x I + X 1is said to be a convex siructure on X
if for all x,y € X and A € I, d(u,W(x,y,})) < Ad(u,x) + (1 = N)d(u,y) for

all u € X. X together with a convex structure is called a convex metric space.

Clearly, a Banach space, or any convex subset of it, is a convex metrix
space with W(x,y,A) = Ax + (1 = A)y. More generally, if X is a linear space
with a translation-invariant metric satisfying
d(Ax + (1 - A)y,0) < Ad(x,0) + (1 - A)d(y,0), then X is a convex metric space.

There are many other examples, but we consider these as paradigmatic.

Definition 0.2. Let X be a convex metric space. A nonemoty subset K CX is

convex if W(x,y,A) € K whenever x,y € K and 1A € I.

Takahashi [14] has shown that the open spheres, B(x,r) = {y € X:d(x,y) <},
and closed spheres, B[x,r] = {y € X:d(x,y) < r}, are convex. Also, if
{Ka :a € A} is a family of convex subsets of X, then ﬂ{l((l :a € A} is

convex.
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Definition 0.3. Let X be a convex metric space. The comvex hull of A § X,
co(A), is the intersection of all convex sets containing A. The alosed convex

hull, co(A), is the intersection of all closed convex sets containing A.

The following result of Takahashi [14, Proposition 5] will be used
frequently.

Lemma 0.4. Let M be a pty pact subset of a convex metric space X,

and let K = coM. If the diameter of M, &(M), is positive, then there exists

u € K such that sup{d(x,u) :x € M} < §(M).

§1. Families of Nonexpansive Mappings.

A common fixed point for a commutative family of nonexpansive mappings is

found. Results of Bahtin [1] are generalized.

Definition 1.1. Let X be a metric space. A mapping T: X + X is said to be
demicompact if every bounded sequence (xn}, such that d(xn,‘!'xn) +0 a8 n >,

contains a convergent subsequence.

Lemma 1.2. Let X be a metric space, and let D be a closed, bounded subset of

X. If T:D+D is a continuous demicompact mapping, then F(T) = {x € D : Tx = x}

is compact.

Proof. Let {xn} be a sequence in F(T). Then, d(xn,'l'xn) = 0 for each n.
Since T 4is demicompact and D i1s bounded, there exists a subsequence (xn }
i

of {xn} such that xtl + x for some x € D. By the continuity of T, Tx = x.
1

Theorem 1.3. Let X be a convex metric space, and let C be a nonempty,
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closed, b , and bset of X. Let G:C + C be a family of commuting

nonexpansive mappings with nonempty fixed-point set. Suppose there is at least
one mapping in G, which is demicompact; then, the family G has a common

fixed point.

Proof. Let D= (B G C:B is nonempty, closed, and convex, and T(B) G B for
each T € G}. Clearly, D is nonempty, since C belongs to D. Partially
order D by set inclusion, and let (Bu :a € A} be a chain in D.

A= n{‘u ta € A} 1is closed, convex, and invariant under each T & G. Let
'l'o € G be a demicompact mapping, and let Fa = {x € Bu : Tox = x}. Each I"ol

is mpty and

P

t; therefore, F = n(r'u :a € A} is a nonempty subset of
A. Thus, A € D; and, by Zorn's Lemma, there exists a minimal nomemptyv, closed

convex set B & C such that T(Bo) G B, foreach T < G.

Let H = {x € Bo : 'l‘ox = x}. Then, H is a nonempty, compact subset of
Bo. From Tx = Tl'ox - 'l‘o'l'x for any x € H and T € G, it follows that
T(H) ¢ B for each T € G. Again, by Zorn's Lemma, there is a minimal.
nonempty, compact set M € C such that T(M) ¢ M for each T € G. Clearly,

MG ‘o' and the minimality of M in H implies T(M) =M for each T € G.

Suppose M consists of more than one element. Then, by Lemma 0.4, we
conclude that there is u € ;;(M) such that p = sup{d(x,u) : x € M} < §(M).
Since Bo is convex and M & Bo, it follows that u belongs to BO. For each
x € M, u e B[x,0]. Let N= () B[x,0] and P=NN B . Then, P
closed and convex. Also, T(P) x_c_e;l for each T € G. To see this, since
T(Bo) € B foreach T € G, it suffices to show that T(N) € N for each

TEG. Let z €N and T € G. Then, d(z,x) <p for each x € M. Since
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T(M) = M, there is a y € M such that Ty = x; hence,
d(Tz,x) = d(Te,Ty) < d(z,y) < p for each x € M. Thus, Tz G B[x,p] for each
x € M; that is, T(N) € N for each T &€ G. Thus, P belongs to D; and by

the minimality of Bo in D, we have P = Bc

Since T is continuous and M 1is compact, there are elements x,y in M
such that d(x,y) = §(M). The element y does not belong to B[x,p], and,
consequently, y does not belong to Bo, vhich is a contradiction. Thus,

M= {x} for some x in C, and Tx = x for each T in G.

Before stating our next result, we need to recall the following.

Definition 1.4 |7|. Let X be a metric space and D be a bounded subset of X.

The measure of noncompactness of D, denoted by (D), 1is defined as follows:

v(D) = inf{e > 0: D can be covered by a finite number of subsets of diameter < e}.
Y(D) has the following properties:

(1) 0 < vy(D) < &(D).

(2) y(D) =0 if and only if D is precompact (i.e., D is compact).

(3) (D) = y(D).

(4) y(C U D) = max{y(C), v(D)}.
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(5 CC D implies v(C) < Y(D)-

(6) vy(s(B,r)) < y(B) + 2r, where S(B,r) = {x € X:d(x,B) < r}.

If X 41s a Banach space, then in addition we have:

(7) y(C+D) <v(C) +y(D), where C+D={c+d:c@C, d € D}.

(8) vy(a(D)) = Iuh(b), vhere a 1s any real number.

Closely related to the notion of measure of noncompactness is the concept of

k~-set contraction.

Definition 1.5. Let X be a metric space. A continuous mapping T:X + X is
said to be a k-set contraction if for any bounded subset D of X we have
Y(T(D)) < ky(D). T is said to be demsifying if for any bounded subset D of X

such that y(D) ¢ 0, Y(T(D)) < y(D).

An elegant discussion of measure of noncompactness and densifying mappings

may be found in [10] and [12].

Theorem A [10, 11, 13]. Let X be a Banach space and C be a closed, bounded,

convex subset of X. Let T:C -+ C be a densifying mapping. Then, T has at

least one fixed point in C.

Lemma 1.6. Let X be a metric space and D be a nonempty, closed, bounded

subset of X. Let T:D + D be a densifying mapping. Then, T is demicompact.
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Proof. Let (xn} be a bounded sequence in D such that d(xn.’l'xn) + 0. We

need to show that (xn} has a gent sub or, equivaleatly, it is

snough to show that y{x } = 0. Let M= {x}, so T(M) = {T(x)}. Since

d(x ,Tx ) + 0, it follows that for any ¢ >0, B(T(M),e) = UB(y,e) : y € T(M}
contains all but a finite number of elements of M. Thus,

Y < Y(B(T(M,e)) < Y(T(M)) + 2e. Hence, v(M) < y(T(M)); and, since T is
densifying, vy(M) = 0.

The following result of Bahtin [1] follows as a special case of Theorem 1.3.

Corollary 1.7 [1, Theorem 1]. Let X be a real Banach space. Let C be a

nonempty, bounded, closed convex subset of X. Let F be a commutative family
of nonexpansive mappings of C into itself, Let there be at least one densifyin

mapping in F. Then, the operators T in F have a common fixed point.

Proof. It follows from Theorem A that F(T), the fixed-points set of T in C,
is nonempty for each T in F. An appeal of Lemma 1.6 establishes the

demicompactness of T.

The converse of Lemma 1.6 is not true, as can be seen from the following

examples.

Example 1.7. Let X = [0,1] with the usual metric. Define T:X + X, as
Tx = x/2 4f x#0 and T(0) = 1. Then T 1is not densifying, due te the lack
of continuity of T. However, T is demicompact. Indeed, if {xn) is any
bounded sequence in X such that x - 'l‘xn +0 as n +«; then, from the

Bolzano-Weierstrass theorem, it follows that {xn) has a convergent subsequence.
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Example 1.8. Let B = hl"Z"""u""} be the usual orthonormal basis for
1.2. Define T:B + B by ’r(ei) e Then, T is continuous (in fact, an
1squtry). but not densifying. However, T  is demicompact. Indeed, if
(01]:_1 is a bounded sequence in B such that e, - '.l'e1 converges, then

{ei}:_l must be finite.

Definition 1.9. A convex metric space X is said to be strictly convex if for
any x,y E X and A(0 < A < 1), there exists a unique element z € X such

that Ad(x,y) = d(z,y) and (1 - A)d(x,y) = d(x,z).

Lemma 1.10. Let X be a strictly convex metric space and K be a nonempty
convex subset of X. If T:K + K is nonexpansive, then F(T) = {x € K: Tx = x]

is convex.

Proof. Let x,y € F(T). Since K is convex, it follows that W(x,y,A) € K.
We need to show that T(W(x,y,})) = W(x,y,A). Now,
a(x, T(W(x,y,1))) = d(Tx,T(W(x,¥,A))) < d(x,W(x,y,))) < (1 - \d(x,y) and
Ay, TM(x,y,0))) < Mlx,y).
Thus,
d(x,y) = d(Tx,Ty) 2 d(Tx,T(W(x,y,1))) + d(T(W(x,y,})),Ty) < (1 - A)d(x,y) + Ad(x,y)

= d(x,W(x,y,))) + d(W(x,y,),y) = d(x,y).

By the strict convexity of the space, it follows that W(x,y,A) = T(W(x,y¥,A)).

Theorem 1.11, Let X be a strictly convex metric space. Let F:X + X be a
family of commuting nonexpansive mappings with the properties: (a) at least one
of the mappings To € F 1is demicompact, (b) mapping ‘.I.‘o has at least one fixed

point, and (c; there are no fixed points of the mapping To outside
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8 = {y € X:d(x,y) < r}. Then, the family F has a common tixea point.

Proof. It follows from tne continuity of T~ and Lemma 1.10 that

D={x € X:Tx=x} is bounded, closed, and convex. Also, for any T € F,
T(D) ¢ D. Indeed, Tx = T'l'ox - Tol'x for any x € D; that i{s, Tx @ D.
Therefore, T(D) € D. The existence of ; common fixed point now follows from

the properties of the set D and Theorem 1.3.
As a coroilary of Theorem 1.11, we have the following.

Corollary 1.12 [1, Theorem 2]. If X is a strictly convex Banach space and if

in the commutative set F of nonexpansive operators on X there exists at least
one densifying operator Ao with the properties (a) operator Ao has at least
one fixed point and (b) outside a ball 1EY] < r, there are no fixed points of

operator Ao; then, the operators A &€ F have a common fixed point.

§2. Asymptotically Nonexpansive Mappings.

In this section, we find a common fixed point for a commuting family of
asymptotically nonexpansive mappings on certain subsets of a convex metric space.

These results extend those of Goebel, Kirk and Thele [4], Hu [5], Kirk [6], and

DeMarr [2].

Definition 1.2, Let X be a metric space, and let T:X > X be a mapping. A
subset K of X is said to be sequentiaglly closed under T if for each x € K,

every subsequential limit point of {T°x} 1lies in K.
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Theorem 2.2. Let K bde a

p convex sub of a metric space X.
Let F be a comwua.lve family or continuous mappings of K into itself,
satisfying the following conditjon: for all x € K and T € F,

(%) 1im sup{ sup d(T'x,T'y) - d(x,y))} < 0. Then, P has a common fixed point.
pood ye&kK

Proof. Applying Zorn's Lemma, we obtain a set L € K, which is minimal with

respect to being Ys pact, ex, and sequentially closed under each

T € F. Again, by Zorn's Lemma, there is a set M ¢ L such that M is minimal
with respect to being nonempty, compact, and sequentially closed under each
TEF. Fix S € F, and let N=N N s(M).

By the continuity of S, N is compact. To show that N 1s nonempty, let

n
x € M. Then, s"x} G K and there exists a subsequence {S ix} and w € K

o
such that 8 ix +w. Since x €@ M and M is sequentially closed under S,
w € M. Consequently, Sw @ S(M). Also, continuity of S implies that

n n
S(w) = S(1im S 1:) = 1im S “’lx; and, since M is sequentially closed under
1. 14

S, S(w) € M. Hence, S(w) € M 11 S(M = N,

Finally, N is sequentially closed under each T € F. Let x @ N and

n
z=1ia T "x. Since x € M and M is sequentially closed under T, z € M.

f4e
Algo, x € S(M) implies x = Sy for some y € M. Hence,

. 1 M oy
S(T'y) =T "(Sy) =T x+z as i +o Since L is compact {T "y} has a
oy %y
convergent subsequence {T .Jy}, and there is v € L such that T jy + Vv as

j +» ». From the fnctl that Yy € M and M is ae‘t}uent'ially closed under T,
\ o

i
v @ M. The continuity of S implies that S(T 3y + S(v) as j + =; consequently,

S(v) = 3; i.e., z € S(M). Hence, z € N and XN is sequentially closed

under each 'T € F.
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Thus, we see that N is a pty, pact b of M, which is
sequentially closed under each T € F. Hence, by the minimality of M, N = M;

and, thus, M ¢ S(M). Since S € F vas arbitrary, M ¢ S(M) for all S g F.

If 8(M) = 0, we are finished. Assume that 3(M) > 0. Then, by Lemma 0.4,
there exists x € L such that 0 <r = sup(d(xo,y) :y € M} < §(M). Define

p={() Bly,r]}) N L. Clearly, D is convex and compact. Also, D # ¢,
yEM

since x, e D. Since M 1is compact, there exist points xl,xz € M with
d(xl.xz) = §(M) > r. Hence, x, ¢ B[xl,r] and x, # D. On the other hand,

x, € M ¢ L; and, thus, D is properly contained in L.

2
Finally, to show that D 1is sequentially closed under each T € F; let
n
z € D, suppose 1lim T j(z) = w, and show that w € D. Let ¢ > 0 be given.
3o . .
Since 1im sup{ sup [d(Tiz,Tix) - d(z,x)]} < 0, there is an integer K such that
1+ xGK ! N o,
+if 1 > N, sup{d(Tz,Tx) - d(z,x)} <e. Also, since T z-+w as i+,
x €K n
there is nj > N such that d(w,T Jz) < €. Since T(M) €¢ M for each T € F,
n n
MGT j(H). Let yEMCT 3(m. Then, there exists a u € M such that
nj uj “_-] n uJ ﬂnj
T =y and dGw,y) < d(w,T Iz) + a(T dz,y) < d@w,T J2) + a(z 32,7 du)
<€ +d(z,u) + € = 2e + d(z,u) < 2¢ + r. Since e was arbitrary,
d(w,y) < t,w @ Bly,r]. Thus, w € () Bly,r]. On the other hand, since
yEM n
2z € DC L and L 1is sequentially closed under F, w = 1lim T 1: € L. Thus,
{40
w € (N Bly,x]) N L =D, showing D 1is sequentially closed under each
y&
T € F. Thus, we see that D is a nonempty, compact, convex proper subset of L

and that it is sequentially closed under each T € F. This contradicts the

minimality of L. Thus, M consists of a single point, which must be a fixed

'

point of F. \
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Definition 2.3. Let X be a metric space and K be a nonempty subset of X. A

wmapping T:K + K is called asymptotioally nomexpansive if for each x,y & K,
d(‘l’"x.'l‘ty) :kid(x,y); i=1,2,..., where (ki} is a fixed sequence of positive

‘ real numbers such that k1 +1 as 1+ =,

Corollary 2.4. Let K be a nonempty, compact, convex subset oI a convex metric
space X. If F:K-+ K 1s a commutative faﬁﬂ.y of continuous, asymptotically

nonexpansive mappings, then there is x @ K such that Tx = x for all T € F.

Proof. It follows analogously to Kirk's result |6] for Banach spaces that if T
is asymptotically nonexpansive, then T satisfies condition (K) in Theorem 2.2.

N

The result now follows.

Example 2.5 |3|. Let B denote the unit ball in the Hilbert space lz. and let
2

T be defined as folldws: T(xl,xz,xa,...) +> (O,x1 ’A2x2’A3x3"")' where Ai

is a sequence of nuuwbers such that 0 < Ai <1 and

P

[TA, =1/2 (for example, A, may be taken as 1 - -=). Then, T is

=2 1 1 12

asymptotically nonexpansive; however, T 1is not nonexpansive. Thus, the class

of asymptotically nonexpansive mappings 1s wider than the class of nonexpansive

mappings.

Example 2.6. Let X = [0,1], with the usual metric. Define T:X + X by
Tx = %v’;. Then, Tnx + 0 uniformly as n + »; so, T satisfies condition (K);

but T 4is not asymptotically nonexpansive, In fact, T does not satisfy a

Lipschitz condition.

The following results of Goebel, Kirk, and Thele [4], Hu [5], and DeMarr [2]

are special cases of Theorem 2.2 and Corollary 2.4.
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Corollary 2.7 [4, Theorem 3.1]. Let K be a pty, pact, convex sub of

a Banach _pace X, and let F be a commutative semigroup of asymptotically
nonexpansive mappings of K into K. Then, there exists a point x € K such
that Tx = x for each T € F.

£ -

Corollary 2.8 ]5]. Let X be a Banach space and M be a compact, convex subset
of X. If F 1is a nonempty commuting family of continuous mappings of X into
itself, satisfying the condition that for each x € X and f € F,

1im sup{ sup["fix - fiy" - Jlx - y||J} <0; then, F has a common fixed point
i+ yEX

in X.

Corollary 2.9 |2l Let X be a Banach space, and let M be a nonempty, compact,

convex subset of X. If F 1is a nonempty commuting family of nonexpansive

mappings of X into itself, the family F has a common fixed pofnt in X.
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