[1] Dale ALSPACH:
A fixed point free nonexpansive map. Proc. Amer. Math. Soc. 82 (1981), 423-424.
MR 0612733
[2] L. B. CIRIC:
A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267-273.
MR 0356011 |
Zbl 0291.54056
[3] W. G. DOTSON, Jr.:
Fixed point theorems for non-expansive mappings in star-shaped subsets of Banach spaces. J. London Math. Soc. 4 (1972), 408-410.
MR 0296778
[4] M. EDELSTEIN:
An extension of Banach's contraction principle. Proc. Amer. Math. Soc. 12 (1961), 7-10.
MR 0120625 |
Zbl 0096.17101
[5] S. ITOH:
Some fixed point theorems in metric spaces. Fundamenta Mathematicae 102 (1979), 109-117.
MR 0525934 |
Zbl 0412.54054
[6] M. A. KRASNOSEL'SKII G. M. VAINIKKO, al.:
Approximate solutions of operator equations. Wolters-Noordhoff publishing, Groningen 1972.
MR 0385655
[7] H. V. MACHODO:
A characterization of convex subsets of normed spaces. Kodai Math. Sem. Rep. 25 (1973), 307-320.
MR 0326359
[8] S. A. NAIMPALLY K. L. SINGH: Fixed and common fixed points in convex metric spaces. preprint.
[9] S. A. NAIMPALLY K. L. SINGH J. H. M. WHITFIELD:
Fixed points in convex metric spaces. preprint.
MR 0759448
[10] B. E. RHOADES:
Some fixed point theorems for generalized nonexpansive mappings. preprint.
MR 1048011 |
Zbl 0497.47031
[11] Robert SINE: Remarks on the example of Alspach. preprint.
[12] L. A. TALMAN:
Fixed points for condensing multifunctions in metric spaces with convex structure. Kodai Math. Sem. Rep. 29 (1977), 62-70.
MR 0463985 |
Zbl 0423.54039
[13] W. TAKAHASHI:
A convexity in metric spaces and nonexpansive mappings I. Kodai Math. Sem. Rep. 22 (1970), 142-149.
MR 0267565