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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,3 (1982)

FIXED POINTS FOR GENERALIZED NONEXPANSIVE MAPPINGS
B. E. RHOADES, K. L. SINGH and J. H. M. WHITFIELD 1)

Abstract: The aim of the present paper is to prove the
existence of fixed points for generalized nonexpansive mapp-
ings in convex metric spaces. Such spaces, introduced by Taka-
hashi, included Banach spaces and results of this paper gene-
ralize those of Dotson, Rhoades and others.

Key words gnd phrages: Convex metric spaces, star-shaped
metric spaces, normal structure, nonexpansive, generalized non-
expansive mappings, quasi-contraction, locally contractive,
uniformly locally contractive mappings, fixed points.

Classification: 47H10, 52H25

Introductjon. In 1970 Takshashi [13]) introduced a notion
of convexity in metric spaces (see Definition 1.1) and extend-
ed some fixed point theorems to convex metric spaces. Subse-
quently Itoh [5), Machado [7), Tallman [12], Naimpally and
Singh [81, Naimpally, Singh and Whitfield 19) studied convex
metric spaces and fixed point theorems. This paper is a conti-
nuation of these investigations.

In section 1 a fixed point theorem is proved for genera-
lized nonexpansive mappings. Section 2 deals with the exist-
ence of fixed points in nonconvex domains.

Throughout this paper X and I denote, respectively, a
metric space X, with a metric d, and the unit interval LO,1].

The following definition was introduced by Takahashi [ 13).

1) Resesrch supported in part by a grant from NSERC (Canada).
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Definition 1.1. Let X be a metric space. A mapping W:
i X=X>I— X is said to be a copvex structure 1f, for each
x,ye X and A € I, the following condition is satisfied:

diu,W(x,y, A)) 2 Ad(u,x) + (1=A)d(u,y)
for all ue X. A metric space with a convex structure will be

called a convex metric space.

If X is a Banach space, then, as a metric space with
d(x,y) =lx~-yll , the mapping W:Xx XxI—> X defined by
wix,y,A) = Ax + (1-A)y is a convex structure. Thus a Banach
space, or any convex subset of a Banach space, is a convex me-
tric space. There are many convex metric spaces which cannot
be imbedded in any Banach space [13, Examples l.1 and 1l.2].

Definition 1.2. Let X be a convex metric space. Let K
be a nonempty subset of X. K is called convex if W(x,y, A) be-
longs to K for all x,ye K and A€ I,

Definition l.3. A metric space X is said to be gtgr-sha-
ped if there exists an Xy € X and a mapping W:X = {xoix I—X

such that, for each x,ye€X and A€ I,

d(x,W(y,xo, A)) £ Ad(x,y) + (1- A)dix,x ).

Star~shaped metric spaces are generalizations of star-sha-
ped subsets of Banach spaces, where a subset K of a Banach spa-
ce is star-ghaped if there exists an X € K such that for each
xek, Ae I, Ax + (I—A)xoe K. It is obvious that convex me-

tric spaces are star-shaped metric spasces, but not conversely.
Jefinition 1.4. A star-gshaped metric space X is said to
satisfy copdition (I) if for any x,yeX, Ae I,
alwlx,xg, A), W(y,x , A)) £ Ad(x,y).
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The condition (I) is always satisfied in any normed line-
ar space. Indeed, let W(x,x,, A) = ax + (1~ A)x, and
\'(y,xo,.ﬁ.) = Ay + (1= A)x,. Then d(W(x,x , A), W(y,x , 1)) =
= llw(x,xo,?\.) - W(y,xo,.?\,)“ =llAx -Ayl = Allx - gl =‘7Ld(x,y)t.

Definition 1.5. A mapping T:X—> X is said to be nopex-
pansive if d(Tx,Ty)< d(x,y) for all x,ye X. T is called gene-
ralized nonexpansive if for all x,ye X, d(Tx,Ty)< max {d(x,y),
a(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}. T is called a gugsi-con-—
traction if there exists a constant k, 04 k<1, such that for
all x,yeX, d4(Tx,Ty) £ k max {d(x,y), d(x,Tx), d(y,Ty), d(x,Ty),
a(y,Tx)%.

A generalized nonexpansive mapping may or may not be con-
tinuous. Indeed, let X =[0,5] with the usual metric. Define
T:X —> X by T(x) = x/2, O4£x<4 and T(x) = -2x + 10, 44£x 45,
Then T is a continuous generalized nonexpansive mapping, which
is not nonexpansive (take x = 4, y = 5). On the other hand, if
X =[0,1], and T(x) = 0, 0<£x £1/2, T(x) = 1/2, 1/2<x 41, then
T is g discontinuous generalized nonexpansive mapping.

The following is proved in [10, Theorem 2].

Theorem R. Let X be a complete reflexive Banach space, K
a closed, bounded, convex subset of C, T a selfmap of K satis-
fying

Itx-Ty ll 2 alx,y) Mx-yll + bix,y) Ux-Tx |l +

bly,x) Wy=-Tyl + c(x,y) hx=Tyl + e(y,x) Ny-Tx |l ,
where a, b, ¢ are nonnegative real valued mappings from Kx K
satisfying (a+b+c) (x,y) + (b+c)(y,x) <1 for all x,yeK. If in
addition, sup (b(x,y) + c(y,x))< 1.

x, 6K
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Then T has a fixed point in K.
In Theorem R, the mapping T is not necessarily continuous.
A theorem similar to Theorem R, for discontinuous genera-
lized nonexpansive mappings is not possible even in uniformly
convex Banach spaces, ss can be seen from the following exam-

ple .

Exapple 1,1, Let X =R and K = [0,1)c R, Define T:K —
—>K by T(x) = 3/4, 0£x21/2, T(x) = 1/2, 1/2<x 41, Clear-
ly T is a generalized nonexpansive mapping without a fixed
point.

However, for continuous generalized nonexpansive mappings

the following can be proved.

Theorem 1l.1. Let X be a compact star-shaped metric spa-
ce satisfying condition (I). Let T:X—> X be a continuous ge-
neralized nonexpansive mapping. Then T has a fixed point.

Proof. Let xocx. For O<k<1l, define the mapping Tk as
follows: T, (x) = w(Tx,xo,k). Since X is star-shaped, it fol-
lows that Tk maps X into itself. Using condition (I), 1'k is a
quasi-contraction. Indeed, d(l‘k(x),l‘k(y)) = d('(l‘x,xo,k),
W(Ty,x,,k)) £ kd(Tx,Ty)< k max {d(x,y) ,d(x,Tx),d(y,Ty),d(x,Ty),
d(y,Tx)} for all x,ye X. It follows from [2, Theorem 1) that

there exists an Xy € X such that Tk(xk) = Xy Moreover,
a(rlx,),x,) = d(Tx), T (x)) = d(T(x), I(Txk,xo,x))

4 kd(T(xy), Tx,)) + (l-k)d('1'(xk) ,xo),

which approaches zero as k—»> 1, since X is bounded. Hence

lim, d(l’(xk),xk) = 0. Since X is compact, {xk} has s conver-
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gent subsequence {xk§ converging to some point xe& X. Thus

limy d(xki,T(xki) = O. By the continuity of T, it follows that
T(xki)-—->TCx). From the triangular inequality, d(x,Tx) <

£ d(x,xki) + d(xki,l‘(xki) + d(T(xki) ,T(x)). Taking the limit as
i1 —> 00 ylelds x = Tx.

An immediate consequence of Theorem 1.1 is the following.

Corollary 1.,1. [3, Theorem 1.) Let X be a Banach space and
K be a nonempty compact star-shaped subset of X. Let T:K—> K
be a nonexpansive mapping. Then T has a fixed point in K.

Defipnition 2.,1. A mapping T of X into itself is said to be
locally contractive if for each xe€X there exist ¢ amd A (e >
>0, 0 £ 2 < 1), which may depend on x, such that p,qeS(x,e )=
= {y:d(x,y)< €3 dimplies d(T(p),T(q))< A d(p,q). T is called

(e-2)-upiformly locallv comtractive if it is locally contrac-
tive and both ¢ and A are independent of x.

Definition 2,2. A mapping T of X into itself is called a
Banach operator if there exists a constant k, O£ k<1, such that
for all x¢ X, d(rz(x),T(x))ékd(Tx,x).

A Banach operator may not be continmuous, and may have more
than one fixed point. The following lemma, whose easy proof is
omitted, will be needed.

Lempa 2,1 Let X be a complete metric space, T:X—> X a
continuous Banach operator. Then T has a fixed point.

Darinition 2.3, Let X be a convex metric space. X satis-
fies condition (II) if for sll x,y,z€X and 2 6 I,

d(w(x,z,A), Wy,z,A)) £ adlx,y).
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Condition (II) is always satisfied in any normed linear

space.

Theorem 2.1. Let X be a convex metric space satisfying
condition (II). Let K be a compact subset of X. Let T:K — K
be a continuous mapping. Suppose,

(1) there exists qe K and a fixed sequence of positive
reals k,(k <1) converging to 1, such that W(Tx,q,k )€K for
all x €K; further for each xeK and k., d(T(w(Tx,q,kn)),T(x))é
£ d(w(Tx,q,k,x),
or

(ii) X is star-shaped and d(Tx,Ty) < d(x,y) whenever
d(x,y) < e (x,yeK) for ¢ > O. Then T has a fixed point.

Proof. Define the map Tn by
To(x) = w(Tx,q,k ).

Then each Tn is a continuous Banach operator. Indeed, using
condition (i) and (II),

A2 (x), T (x)) = alT (W(Tx,q,k)), W(Tx,q,k;))

"

d(W(T(‘II(Tx,q,kn) )yq,kp) ), W(Tx,q,kn))

IN

knd(T(w(Tx,q,kn),Tx)

[N

kd(w(Tx,q,k ) ,x)
knd(Tn(x),x).

By hypothesis it follows that each Tn maps K into itselr.
It follows from Lemma 2.1 that there exists a Y€ K such that
Tn(yn) = Ype

d(T(yn),yn) = d(T(y), W(Ty, ,w,k,)) =
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< kd(2(y ), T(yn)) + (1-k )a(T(y_),q)

which approaches zero as k —» 1. Hence limnd(yn,'l‘(yn)) = 0.
Since X is compact, {yn} has a convergent subsequence {yni}
converging to some point yeX and, from the above,

d(yni,'l'(yni)——> O. By the continuity of T it follows that

T(yni)——-> T(y). Finally,
d(y,Ty)éd(y,yni) + d(yni,T(yni) > d(T(yni),T(y)).

Taking the limit as i —> 00 yields y = T(y).

If (i1) holds, then each map T, defined by Tn(x) =
= W(Tx,q,k;) is ( e,k )-uniformly locally contractive. Moreo-
ver, K being compact and star-shaped is complete and ¢ -chain-
able. It follows from [4, Theorem 5.2] that each T, has a fix-
ed point y . The rest of the proof is the same as in (1).

Remsrk 2,1. If X is a Banach space and K is a star-shap-
ed subset of X (in particular if K is convex) then, for a non-
expansive self mapping T of K, (1-kn)q + knT(x)e K, for each
xeX and eny sequence ik } converging to l(kn< 1), where q is
the star center of K. Moreover, from the nonexpansiveness of
T it follows that NT((1-k )q + X T(x)) - T(x) Il £ I (1-k )q +

+knTx-xl\.

Remark 2.2. If K is star-shaped, then Theorem 1 of [3]
follows from Theorem 2.1, Hypothesis (i) above weakens the
star-shaped assumption, as can be seen from the following ex-
ample.

Example 2.1. Let K be the set {(0,y):yel-1,11¢ u
v {(1- %5,0):neN§\J((1,O)’; with the metric induced by the
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norm [l (x,y)ll = Ix| « Iyl , Define the map T:X —> K as fol-
lows: T(0,y) = (0,-y), T(1- £,0) = (0,2- 1), 1(2,00 = (0,1).
Then T satisfies condition (i) of Theorem 2.1 with the choice
q=10(0,0, k; =1-2 n=1,2,..., although K is not star-
shaped.

Remark 2.3. Let X be a reflexive Banach space and K be
a nonempty weakly compact convex subset of X having normal
structure. It is clear from Example l.1 that a discontinuous
generalized nonexpansive selfmap of K may not have a fixed
point. Also, if X is a Banach space and K is a nonempty weak-
ly compact convex subset of X, then a continuous generalized
nonexpansive map need not have a fixed point (see, e.g., I1]
and [11]). It is known (6, Exercises 1.12, 1.13, 1.14) that a
continuous generalized nonexpansive selfmap of a closed, boun-

ded, convex subset of certain Banach spaces is fixed point free.

Problem. Must a continuous generalized nonexpansive map-
ping of a weakly compact convex subset of a reflexive Banach

space with normal structure have a fixed point?
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