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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23.3 (1982) 

FIXED POINTS FOR GENERALIZED NONEXPANSIVE MAPPINGS 
B. E. RHOADES, K. L SINGH and J. H. M. WHITFIELD') 

Abstract: The aim of the present paper is to prove the 
existence of fixed points for generalized nonexpansive mapp­
ings in convex metric spaces. Such spaces, introduced by Taka-
hashi, included Banach spaces and results of this paper gene­
ralize those of Dotson, Rhoades and others. 

Key words and phrases: Convex metric spaces, star-shaped 
metric spaces, normal structure, nonexpansive, generalized non-
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Classification: 47H10, 52H25 

Introduction. In 1970 Takahashi [133 introduced a notion 

of convexity in metric spaces (see Definition 1.1) and extend­

ed some fixed point theorems to convex metric spaces. Subse­

quently It oh 15], Machado 173, Tallman [12], Naimpally and 

Singh [81, Naimpally, Singh and Whitfield 19] studied convex 

metric spaces and fixed point theorems. This paper is a conti­

nuation of these investigations. 

In section 1 a fixed point theorem is proved for genera­

lized nonexpansive mappings. Section 2 deals with the exist­

ence of fixed points in nonconvex domains. 

Throughout this paper X and I denote, respectively, a 

metric space X, with a metric d, and the unit interval 10,1]. 

The following definition was introduced by Takahashi [133. 

1) Research supported in part by a grant from NSERC (Canada). 
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Defini t ion 1 .1 . Let X be a metr ic space. A mapping W: 

: X x X x I — > X i s said to be a convex s t r uc tu r e i f , for each 

x , y c X and Xe J9 the following condit ion i s s a t i s f i e d : 

d (u ,W(x ,y ,A) ) -4Ad(u f x) + Cl - jOd(u ,y ) 

for a l l u e X . A metr ic space with a convex s t r u c t u r e wi l l be 

called a convex metr ic space. 

I f X i s a Banach space, then, aa a metric space with 

d(x,y) =l!x-yll , the mapping W:Xx X* I —> X defined by 

W(x,y,A) a Xx + (l-X)y i s a convex s t r u c t u r e . Thus a Banach 

space, or any convex subset of a Banach space, i s a convex me­

t r i c space. There are many convex metric spaces which cannot 

be imbedded in any Banach space [13 , Examples 1.1 and 1.2J. 

Def ini t ion 1.2. Let X be a convex metr ic space. Let K 

be a nonempty subset of X. K i s cal led convex i f W(x,y,A.) be­

longs to K for a l l x , y e K and X e I . 

Defini t ion 1.3. A metric space X is said to be s t a r - s h a ­

ped i f there e x i s t s an xQ e X and a mapping W:X*£xA x I—:> X 

such t h a t , for each x , y e X and X e I , 

d ^ , W ( y , x 0 , A ) ) ' 6 A d ( x , y ) • ( 1 - A ) d ( x , x 0 ) . 

Star-shaped metric spaces are genera l iza t ions of s t a r - s h a ­

ped subsets of Banach spaces , where a subset K of a Banach spa­

ce i s s tar-shaped i f there e x i s t s an x e K such tha t for each 

xe.K, J l e I , Xx • ( l - A ) x A e K , I t i s obvious that convex me-
' * o 

t r i e spaces are s tar-shaped metr ic spaces, but not conversely. 

Def ini t ion 1.4. A s tar-shaped metric apace X i s said to 

sa t i s fy condi t ion (I) i f for any x , y £ X , Xe I , 

d(w(x,xQ , X), W(y,x0, A) ) £ A,d(x,y). 
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The condit ion ( I ) i s always s a t i s f i e d in any normed l i n e ­

ar space. Indeed, l e t W(xfx f X) « Xx +• ( 1 - A ) x and 

W<y,x0, X) = Ay • ( l - A ) x Q . Then d(w(x fxQf X) t W(yfxQf X)) -

= llW(xfx0, X) - W(y,x0, X)\\ » II A x -Ayll » Allx - y 1 =*Ad(x,y). 

Def ini t ion 1.5. A mapping T:X—> X i s said to be nonex­

perts ive i f d(Tx,Ty)-£ d(x,y) fo r a l l x , y e X . T i s cal led gene­

r a l i z ed nonexoansive i f fo r a l l x ,y€ X, d(Tx fTy)^ max-fd(x fy), 

d(x fTx), d (y ,Ty) , d(x ,Ty) , d(y ,Tx)J . T i s ca l led a Quas^-con-

t r a c t i o n i f there e x i s t s a constant k, 0 . 4 k « : l , such tha t fo r 

a l l x , y € X , d(Tx,Ty)^k max{d(x ,y ) , d(x ,Tx) , d(y,Ty) , d (x ,Ty) , 

d(y,Tx)$. 

A general ized nonexpansive mapping may or may not be con­

t inuous . Indeed, l e t X = CO,53 with the usual met r ic . Define 

T:X—*X by T(x) = x /2 , 0 ^ x < 4 and T(x) = -2x + 10, 4 ^ x ^ 5 . 

Then T i s a continuous general ized nonexpansive mapping, which 

i s not nonexpansive (take x = 4, y =- 5) . On the other hand, i f 

X - [ 0 , 1 3 , and T(x) = 0, 0 ^ x ^ 1 / 2 , T(x) * 1/2, 1 / 2 ^ x ^ 1 , then 

T i s a discontinuous general ized nonexpansive mapping. 

The following i s proved in [10 , Theorem 23. 

Theorem R. Let X be a complete re f l ex ive Banach space, K 

a closed, bounded, convex subset of C, T a selfmap of K s a t i s ­

fying 

llTx-Tyll£ a(x,y) llx-yll + b(x,y) Hx-Txll • 

b(y,x) lly-Tyll • c(x,y), llx-Tyll + c(y,x) Ily-Txll , 

where a, b , c are nonnegative r e a l valued mappings from K* K 

sa t i s fy ing (a+b+c)(x,y) • ( b + c ) ( y , x ) ^ l for a l l x , y 6 K . I f in 

addi t ion, sup (b(x,y) + c ( y , x ) ) . < l . 
x./yв K 
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Then T has a fixed point in K. 

In Theorem R, the mapping T is not necessarily continuous. 

A theorem similar to Theorem R, for discontinuous genera­

lised nonexpanaive mappings is not possible even in uniformly 

convex Banach spaces, as can be seen from the following exam­

ple. 

Example 1.1. Let X - H and K = [0,13 cR. Define T:K— y 

—->K by T(x) » 3/4, O^x.61/2, T(x) - 1/2, l/2<:x-61. Clear­

ly T ia a generalized nonexpansive mapping without a fixed 

point. 

However, for continuous generalized nonexpansive mappings 

the following can be proved. 

Theorem 1.1. Let X be a compact star-shaped metric spa­

ce satisfying condition (I). Let T:X—> X be a continuous ge­

neralized nonexpansive mapping. Then T has a fixed point. 

Proof. Let xQcX. For 0<rk-<:l, define the mapping Tk as 

follows: Tk(x) • w(Tx,xQ,k). ^ince X is star-shaped, it fol­

lows that T k maps X into itself. Using condition (I), T k ia a> 

quasi-contraction. Indeed, d(Tk(x),Tk(y)) = d(w(Txfx0,k), 

W(Tyfxofk))^ kd(TxfTy)^k max *d(x,y) ,d(x,Tx) ,d(y,Ty) ,d(x,Ty), 

d(yfTx)} for all xfye X. It follows from 12, Theorem 13 that 

there exists an x ke X such that Tj(xk) * xk. Moreover, 

d(T(xk)fxk) *d(Tx k), Tk(xk)) *d(T(x k) f W(Txkfxo,Jt)) 

^kd(T(x k), T(xk)) • (l-k)d(T(xk)fx0), 

which approaches zero as k—> 1, since X i s bounded. Hence 

liia^ d(T(xk) ,xk) -B 0 . Since X i s compact, Ix^l has a conver-
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gent subsequence ixv } converging to some point x e X . Thus 
* i 

lim4 d (x v ^ ( x . I a 0. B|y the continuity of T, i t follows that 
i * i K i 

T(x,_ ) — > T ( x ) . From the triangular inequality, d(x,Tx) £ 
H 

4 d (x ,x k ) • d (x k ,T(xk ) • d(T(xk ) , T ( x ) ) . Taking the l imit as 

i —> co y i e ld s x = Tx. 

An immediate consequence of Theorem 1.1 i s the following. 

Coroljary l . j . [ 3 , Theorem 1.1 Let X be a Banach space and 

K be a nonempty compact star-shaped subset of X. Let T:K—> K 

be a nonexpansive mapping. Then T has a f ixed point in K. 

Definition 2 . 1 . A mapping T of X into i t s e l f i s said to be 

loca l ly contractive i f for each x e X there ex is t e and A ( e > 

>09 0 - . A < 1 ) , which may depend on x, such that p , q e S ( x , & ) = 

* *y:d(x,y)-«- e ? implies d(T(p) ,T (q ) )^ A d ( p , q ) . T i s ca l led 

( g, -X )-uniformly local ly contractive i f i t i s l oca l ly contrac­

t ive and both & and A are independent of x. 

.Definition 2 . 2 . A mapping T of X into i t s e l f i s cal led a 

Banach operator i f there e x i s t s a constant k, 0.£k<~-l, such that 

for a l l x c X , d (T 2 (x ) ,T(x ) )£ kd(Tx,x). 

A Banach operator may not be continuous, and may have more 

than one fixed point. The following lemma, whose easy proof i s 

omitted, w i l l be needed. 

Lejuaa_2xJL. Let X be a complete metric space, T:X—> X a 

continuous Banach operator. Then T has a f ixed point. 

Definit ion 2 . ^ . Let X be a convex metric space. X s a t i s ­

f i e s condition ( II ) i f for a l l x f y , s e X and X c I f 

d ( w t x f z f A ) f WCyf«f A ) ) «*Ad(x fy). 
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Condition (II) is always satisfied in any normed linear 

space. 

Theorem 2.1. Let X be a convex metric space satisfying 

condition (II). Let K be a compact subset of X. Let T:K—>K 

be a continuous mapping. Suppose, 

(i) there exists qe K and a fixed sequence of positive 

reals k ^ k ^ 1) converging to 1, such that W(Tx,q,kn)cK for 

all xcK; further for each X € K and kn, d(T(w(Tx,q,kn)) ,T(x) )£ 

^dCw(Tx,q,kn,x), 

or 

(ii) K is star-shaped and d(Tx,Ty)^ d(x,y) whenever 

d(x,y)-cr c(x,ycK) for & > 0. Then T has a fixed point. 

Proof. Define the map T n by 

Tn(x) = W(Tx,q,kn). 

Then each Tn is a continuous Banach operator. Indeed, using 

condition (i) and (II), 

d(Tn(x), TR(x)) = d(TnCw(Tx,q,kn)), W(Tx,q,kn)) 

= d(w(T(w(Tx,q,kn)),q,kn)), W(Tx,q,kn)) 

£ k d(T(w(Tx,q,kn),Tx) 

-6 knd(w(Tx,q,kn),x) 

« V ( Tn ( x )' x )-

By hypothesis it follows that each Tn maps K into itself. 

It follows from Lemma 2.1 that there exists a y 6 K such that 

Tn (yn ) - yn-

d(T(yn),yn) - d(T(yn), W(Tyn,w,kn)) & 
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^knd(T(yn), T(yn)) • (l-kn)d(T(yn) ,q) 

which approaches zero as kn—> 1. Hence limnd(yn,T(yn)) = 0. 

Since K is compact, *yn^ has a convergent subsequence -Cyn } 

converging to some point ycX and, from the above, 

d(yn »T(yn ) —-> 0. By the continuity of T it follows that 

T(y )—>T(y). Finally, 

d(y,Ty)^d(y,yn ) • d(yR ,T(yn ) + d(T(yR ),T(y)). 

Taking the l imi t as i—> oo y i e lds y = T(y) . 

I f ( i i ) ho lds , then each map Tn defined by TR(x) ~ 

« W(Tx,q,k ) i s ( e , k ) - u n i f o r m l y loca l l y con t rac t ive . Moreo­

ver , K being compact and s tar -shaped i s complete and s - c h a i n -

ab le . I t follows from C4, Theorem 5.2 3 that each T has a f i x ­

ed point y . The r e s t of the proof i s the same as in ( i ) . 

Remark 2 . 1 . I f X i s a Banach space and K i s a s t a r - s h a p ­

ed subset of X ( i n p a r t i c u l a r i f K i s convex) then, for a non-

expansive s e l f mapping T of K, ( l -k R )q + knT(x)6 K, for each 

x e K and any sequence Ak^ converging to l ( k n < l ) , where q i s 

the s t a r center of K. Moreover, from the nonexpansiveness of 

T i t follows that l lT(( l -k n )q + knT(x)) - T(x) II £ II ( l - k n ) q • 

• knTx - x II . 

Remark 2 .2 . I f K i s s ta r -ahaped, then Theorem 1 of T33 

follows from Theorem 2 . 1 . Hypotheai9 ( i ) above weakens the 

atar-shaped assumption, as can be seen from the following ex­

ample • 

Example 2 . 1 . Let K be the se t 4 ( 0 , y ) : y e [ - 1 , 1 3 J ^ 

<-» * ( l - JS-O) : n e N \ \J i (1,0) ^ with the metric induced by the 
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norm li(x,y)l . * |xl • iyl , Define the map T:K—>K aa f o l ­

lows: T(Ofy) » ( 0 , - y ) , T ( l - 1,0) * ( 0 , 1 - 1 ) , T ( l ,0 ) * ( 0 , 1 ) . 

Then T s a t i s f i e s condition ( i ) of Theorem 2.1 with the choice 

q « (0 ,0 ) , kn -* 1 - - , n * 1 , 2 , . . . , although K ia not atar-

shaped. 

Remark 2 . 3 . Let X be a ref lexive Banach space and K be 

a nonempty weakly compact convex subset of X having normal 

s tructure. It i s clear from Example 1.1 that a discontinuous 

generalized nonexpansive aelfmap of K may not have a fixed 

point . Also, i f X i s a Banach space and K ia a nonempty weak­

ly compact convex subset of X, then a continuous generalized 

nonexpansive map need not have a fixed point (see, e . g . , I l l 

and i l l } ) . It ia known (6, Exercises 1.12, 1.13 , 1.14) that a 

continuous generalized nonexpansive selfmap of a closed , boun­

ded, convex subset of certain Banach spaced i s f ixed point f ree . 

Problem, Must a continuous generalized nonexpansive? map­

ping of a weakly compact convex subset of a ref lexive Banach 

space with normal structure have a fixed point? 
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