[1] S. FEFERMAN:
Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960), 33-92.
MR 0147397 |
Zbl 0095.24301
[2] K. GÖDEL: The consistency of the axiom of choice etc. Princeton Univ. Press 1940.
[3] D. GUASPARI:
Partially conservative extensions of arithmetic. Trans. Amer. Math. Soc. 254 (1979), 47-68.
MR 0539907 |
Zbl 0417.03030
[4] D. GUASPARI R. SOLOVAY:
Rosser sentences. Annals of Math. Log. 16 (1979), 81-99.
MR 0530432
[5] P. HÁJEK:
On interpretability in set theories. Comment. Math. Univ. Carolinae 12 (1971), 73-79.
MR 0311470
[6] P. HÁJEK:
On interpretability in set theories II. Comment. Math. Univ. Carolinae 13 (1972), 445-455.
MR 0323566
[7] M. HÁJKOVÁ P. HÁJEK:
On interpretabillty in theories containing arithmetic. Fund. Math. 76 (1972), 131-137.
MR 0307897
[8] P. LINDSTRÖM:
Some results on interpretability. Proc. 5th Scand. Log. Symp. Aalborg Univ. Press 1979.
MR 0606608
[10] C. SMORYŃSKI:
Fifty years of self-reference in arithmetic. to appear.
MR 0622365
[11] C. SMORYŃSKI: A ubiquitous fixed-point calculation. to appear.
[12] C. SMORYŃSKI: Calculating self-referential statements: Guaspari sentences of first kind. to appear.
[13] C. SMORYŃSKI: A short course in modal logic. handwritten notes.
[14] R. SOLOVAY: Interpretability in set theories. in preparation.
[15] R. SOLOVAY:
Probability interpretations of modal logic. Israel J. of Math. 25 (1976), 287-304.
MR 0457153
[16] V. ŠVEJDAR:
Degrees of interpretability. Comment. Math. Univ. Carolinae 19 (1978), 789-813.
MR 0518190
[17] A. TARSKI A. MOSTOWSKI R. M. ROBINSON:
Undecidable theories. Horth-Holland Publ. Co. 1953.
MR 0058532
[18] P. VOPĚNKA P. HÁJEK:
Existence of a generalized model of Gödel-Bernays set theory. Bull. Acad. Polon. Sci. 21 (1973), 1079-1086.
MR 0422024