Previous |  Up |  Next

Article

References:
[1] S. FEFERMAN: Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960), 33-92. MR 0147397 | Zbl 0095.24301
[2] K. GÖDEL: The consistency of the axiom of choice etc. Princeton Univ. Press 1940.
[3] D. GUASPARI: Partially conservative extensions of arithmetic. Trans. Amer. Math. Soc. 254 (1979), 47-68. MR 0539907 | Zbl 0417.03030
[4] D. GUASPARI R. SOLOVAY: Rosser sentences. Annals of Math. Log. 16 (1979), 81-99. MR 0530432
[5] P. HÁJEK: On interpretability in set theories. Comment. Math. Univ. Carolinae 12 (1971), 73-79. MR 0311470
[6] P. HÁJEK: On interpretability in set theories II. Comment. Math. Univ. Carolinae 13 (1972), 445-455. MR 0323566
[7] M. HÁJKOVÁ P. HÁJEK: On interpretabillty in theories containing arithmetic. Fund. Math. 76 (1972), 131-137. MR 0307897
[8] P. LINDSTRÖM: Some results on interpretability. Proc. 5th Scand. Log. Symp. Aalborg Univ. Press 1979. MR 0606608
[9] J. R. SHOENFIELD: Mathematical logic. Addison-Wesley 1967. MR 0225631 | Zbl 0155.01102
[10] C. SMORYŃSKI: Fifty years of self-reference in arithmetic. to appear. MR 0622365
[11] C. SMORYŃSKI: A ubiquitous fixed-point calculation. to appear.
[12] C. SMORYŃSKI: Calculating self-referential statements: Guaspari sentences of first kind. to appear.
[13] C. SMORYŃSKI: A short course in modal logic. handwritten notes.
[14] R. SOLOVAY: Interpretability in set theories. in preparation.
[15] R. SOLOVAY: Probability interpretations of modal logic. Israel J. of Math. 25 (1976), 287-304. MR 0457153
[16] V. ŠVEJDAR: Degrees of interpretability. Comment. Math. Univ. Carolinae 19 (1978), 789-813. MR 0518190
[17] A. TARSKI A. MOSTOWSKI R. M. ROBINSON: Undecidable theories. Horth-Holland Publ. Co. 1953. MR 0058532
[18] P. VOPĚNKA P. HÁJEK: Existence of a generalized model of Gödel-Bernays set theory. Bull. Acad. Polon. Sci. 21 (1973), 1079-1086. MR 0422024
Partner of
EuDML logo