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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,4 (1981) 

ON INTERPRETABIUTY IN THEORIES CONTAINING ARITHMETIC II 
Petr HAJEK 

Abstract: InTestigated are Peano arithmetic PA and its 
conserratiTe extension ACAQ using classes. (Instead, one 

could speak on set theories ZP and GB.) IpA (and XJ^CA ^
 a®-ao-

tes the class of all PA-sentences <p such that (PA + 9? ) is 
relatiTely interpret able in PA ((ACAQ + g>) is relatiTely in-
terpretable in ACA0). Independent .2?° sentences g> are clas­
sified according to whether g> e IpA, <p <£ ~-AQA » (~*9 ) £ 

o 
6 XACA * (Ko*e *na* n& c a n n e v e r be in- *PA#^ T n i s &ives 

eight types of independent 2)° sentences* it is shown that 
each type is non-empty. This subsumes and completes most 
known results on the relation of IpA and I^Q^ • Main results 

are obtained by combining and generalizing methods of SolOTay 
and Smorynski; a generalized fixed point calculation for a 
modal propositional calculus, which seems to be of independent 
interest, is presented and heaTily used# 

Key words; RelatiTe interpret ability, modal logic, arith­
metic 

Classification: 03P25, 03B45. 03?30 

§ 1. Introduction 

1.1. Let PA be Peano arithmetic and let ACAQ denote the 

second-order theory with two sorts of Tariables (number Tari-

ables x,y,..« and class Tariables X,Y,...) haTing axioms PA 

minus the induction schema for number Tariables, a new predi­

cate € such that t e Z is well formed iff t is a number term 
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and X is a class term and two groups of second order axioms: 

Arithmetical comprehension: for each formula <p in which 

no class variable is quantified and which does not contain 

the variable Xf the following is an axiom: 

(3X)(Vx)(xeX m y ) 

Induction axiom: 

(OeX£(Vx)(xeX-> S(x)eX))~-» (Vx)(xeX). 

It is well known that ACA0 is a conservative extension 

of PA (each model of PA is expandable to a model of ACA ) ana 

that ACA is finitely axiomatizable (imitate the proof of 

Me tat he or em 1 in 121), Thus we can claim that 

PA:ACAQ = ZF:GB 

where ZP and GB is the Zermelo-Fraehkel and Godel-Bemays set 

theory* And indeed, our results remain valid if we replace 

the pair (PAfACA0) by (ZFfGB) or another similarly related 

pair of theories containing PA. But since our investigation 

concerns PA-sentences we shall speak on PA and ACA , 

1»2„ Por each theory T containing PAf let I,-, denote the 

set of all PA-sentences $> such that (T + cp ) is relatively 

interprttable in T in the sense of Tarski, Mostowski and Ro­

binson 1171* I*tt us survey the known facts on IpA and IACA . 

(1) Ip A^I A C A 5 IPA is TT0-complete (Solovay 1143) but 
o 

3.ACA is recursively enumerable. 
o 
(2) IpA - IACA #=0. In l5l9 a TT °. sentence 9? is con-

0 

struoted such that g> e IpA - 1ACA provided PA is o -consis­

tent} in ill the assumption of o-consistency is replaced by 

that of (mere) consistency. Solovay exhibited a 21J sentence 
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SP e XPA ~ "̂ ACA ^cf# ^10^* Lindstrom independently show-
o 

ed that for an appropriate binumeration oc of PA, the 2S -. 

sentence -i Con^ is in I ? A - I A Q A • Lindstrom also const-
o 

rueted a TT^ sentence y> such that both <p and ~icp belong 
t0 J P A " JACA (see [81)-o 

O) XACA " ^PA*0' InE6:i ii? is s n o w n ttot if this 
o 

difference is non-empty then it must contain a IT? senten­

ce! SoloTay constructed such a sentence 1143. His proof will 

be sketched and analyzed below. 

(4) The following are equiTalent; (i) (p e lpA$ 

(ii) g> is TT ? conserratiTe ( TT^-con), i.e. for each TT? 

sentence jr (PA + <p ) h ar* implies PA Y- sr * (iii) for each 

n, ? A j ~ C o n ( p A r n ) + ^ (where PAr n denotes the set of all axi­

oms of PA that (i.e. whose Godel numbers) are less than n). 

See C3],t6J. Consequently, if if is a TT® sentence and y e 

e I p A then PA r~ & • 

1.3. The aboTe lead to the question what possibilities 

we h&Te for independent S ? sentences <p according to the 

questions whether g> e IpA, g> e I A C A t (-ig> )£ I A C A .(If <p 
o o 

is an independent S ? sentence then necessarily ("~»g? )#IpA# 

see the end of 1.2. Logically, we haTe eight types: 
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!<y Є ІPA ? Є ІACA
0 

(-Ì9>)£І 
0 

1 ao yes yes 

2 ao yes no 

3 ao ao yes 

4 a a no 

5 yes yes yes 

6 yes yes no 

7 yes ao yes 

8 yes no no 

We shall show that there are formulas of all these eight ty­

pes. 

1.4* How let us make some preliiiJlnary observations. 

.First it is easy to see that the formula ~i Con^ (where oo 

is the natural PR-binumeration of PA) is of type 6, since 

we hare PAn(Con^== Con
ACA
 ) (here Con

ACA
 i« expressed us-

o o 

ing the finitely many axioms sufficient to axiomatize ACA
Q
)s 

it is easy to show (-iCon^)e I
P A
, (*nCon

ACA
 )

 e
 *ACA

 f 

TJx Q 0 

(cf* Ell, [163). But we shall show another sen-C o a
ACA* ^ACA^ 

o o 

tence of type 6 below* 

Second, observe that a formula q> of type 7 has the ni­

ce property that <p & I
p A
 - I

A C A
 and (-19? )€ IACA^ - IpAi 

thus g> is a S J sentence showing that IpA - ^XGA 

empty and ng> is a TT® sentence showing that IACA 

ІS ПOП-

- I. 
PA 

— xf 

is non-empty. 

Third, we should make clear what means will be used in 

our proofs* Main tool for showing that semetaiag is -^
 A C A

0 

will he the SolOYay's method described below* Maia tool for 

670 -



showing that somethiag is uaproTable or is aot ia T-^GK w ^ ^ 

be a geaeralized Smoryaski's fixed poiat calculatioa for fi­

xed poiats defiaed by meaas of arithmetically iaterpreted 

modal logic* So show that something is or is aot ia IpA> we 

shall show that the formula ia questioa is or is aot TT°-con. 

Aad ia oae case, where these methods fail, we shall imitate 

a construction due to Madstrom. 

1.5. Most of our (aoa)iaterpretability results will 

follow rather quickly aad easily from SoloTay's coastructioa 

aad from our generalization of Smorynski's fixed poiat calcu­

lation, The coatributioa to arithmetical iaterpretatioas of 

modal logics presented ia § 3 is hoped to be of independent 

iaterest. Bote that § 3 does aot depend oa § 2. 

§ 2. SoloTay#s coastructioa analysed 

2.1. SoloTay constructed a TT? senteace <j? e I^Q^ -

- IpA (ia fact, ia I G B - Izp) ia 1976; a full proof is coa-

taiaed ia a letter by SoloTay to the preseat author. Siace 

I14J has still aot beea fiaished, we shall giTe here a more 

or less detailed sketch of SoloTay's proof ia a form that 

enables us to obtain some general coasequeaces concerning 

I.ACA* This is done with kind permissioa of Professor SoloTay. 

2.2. First, SoloTay uses a rather specific proTabili-

ty predicate related to Herbrand's analysis. Let (Pa)c be 

the eoaserratiTe exteasioa of PA haTiag the followiag pro­

perty: For each seateace (Ji)f (x) of (PA)C there is a 

witnessing coastaat crg xw( x)
 o:? (-?A)C such that the follow-
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ing witnessing axiom is an axiom of (PA)Q: 

(J3x)Y(*)— > cG3x)iKx) is *ae millima"L x sucli ^^ F ( X ) » 

Let A (PA) "be the set of closed instances of axioms of 

(PA) , of equality and identity axioms and of the logical 

axioms (Vx)\p (x) —•> ty (t)# Then we haTe the following lem­

ma ([9 J p. 49): 

Let <p he a closed formula of (PA) . Then (PA)C t— <?> 

iff 9 is a tautological consequence of A(PA). 

Following SoloTay, call a satisfactory sequence on n 

each function s associating with each (PA) sentence less 

than n zero or one such that s commutes with logical connec-

tiTes and giTes the Talue one to each element of A (PA). 

Then eTidently we haTe the following: 

Let 9 he a closed formula of (PA)C. Then (PA)C H <p 

iff there is an n such that for each satisfactory sequence 

s on n we haTe uicp ) = 1. 

Say that g? is proTed on leTel n if each satisfactory 

s on n giTes Talue 1 to g> . Prom now on, saying n <$> i s 

proTable" for a (PA) -formula cp we shall always mean nthe­

re is an n such that £> is proTable on leTel ntt. 

2.3. Lat us work in ACAQ extended conserratiTely by 

adding witnessing constants from (PA)C and the correspon­

ding witnessing axioms. Let us make the following defini­

tion: A class Z is a satisfaction relation on i (in sym­

bols: fr(Zf j)) if (roughly)Z is a function associating (1) 

with each pair (t,u) where t is a term of (PA)C whose Go-

del number is less that j and u is a sufficiently long se-
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quence of numbers a number and (2) with each pair (afu) 

where a is a (PA)C formula whose Godel number is less than 

n and u is a satisfactorily long sequence of numbers a 

truth value 0 or 1 such that 

(a) Z(x . ,u) =- (u),, Ztt-ĵ  + t2,u) = Z(tltu) + Z(t2,u) etc., 

(b) Z(t1 = t2,u) =- 1 iff Z(t1,u) = Z(t2,u) and 

(c) the obvious Tarski's conditions for truth of composed 

formulas are valid. 

Boring details of elaboration of this (evident) defini­

tion are left to the reader, 

2.4. The following lemma is obvious: 

Lemma. (1) (3Z)Tr(Z,0) 

(2) (3Z)Tr(Z,j)-> (3Z)Tr(Z,rj + 1) 

(3) a?p(z1,d1) & TT(ZZ9iz)^ix^rj2 —•> Z-̂ 9 z2. 

Caution: But the statement ( V j)(3 Z)Tr(Z, j) is unpro­

vable in ACAQ (pedantically: in ACA0)C) since it implies e-

vidently Con^ where oc is the natural binumeration of PA. 

This shows that the induction scheme 

(y(0)&(Vx)(y(x) -> rCS(x)))-^ (Vx)v(x) 

is unprovable in ACAQ (which is well known). 

2.5. In ACAQ, assume Tr(Z,j). Then Z defines a true 

satisfactory sequence a on j - restriction of s to pairs 

(a,0) where a is a (PA)c-sentence, a--.Q. Thus: if (f is pro­

ved of level n and Tr(Zfn) then <p is true, i.e. Z(cp,0) =- 1. 

2.6. "It's snowing" - it's snowing-metatheorem: Let f 

be a (PA)c-formula whose Godel number is less than j. Then 

ACA0i- TrCZ,j)^9Cx0,...fxn)»2(cy(x0,...,xn),x0,...>xn)=- 1. 
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(Proof by induction on the length of <p •) 

2.7. Let Trn(x) be the ̂ -predicate of PA which is 

a truth predicate for 2t^-sentences constructed in the usu­

al way} in particular, we have PA t~ g? SE Trn( Jo ) for each 

S ° sentence g? . We have the following lemma: 

Lemma (in ACA ). Let a € _S ° and let Tr(Zfx) where x 

is the Godel number of a. Then Z(a,0) » l iff Trn(a). 

(By induction on a.) 

2.8 (cf. 1181). Say that n is occupable (Ocp(n)) if 

(3Z)Tr(Z,n). By the above, Ocp(n) is not equivalent to any 

formula not containing bound class variables. The heart of 

Solovay's construction is the following theorem: 

2*9. Theorem. Let cp be a PA-formula and let ACA* be 

an extension of kQk such that ACA* proves "there is a sa­

tisfactory sequence s of non-occupable length such that 

s(cp) = 1M. Then (ACAQ + 9 ) is interpretable in ACA*. 

Sketch of the proof: First we define an interpretation 

of ((PA)C + 9 ) in ACA* and then extend it to an interpreta­

tion of ACAQ. The first idea is: consider values »(a) for 

occupable a (pedantically: for a of occupable Godel no.) -

this gives something as a complete Henkin extension and one 

could try to use it for a definition of an interpretation of 

PA putting 

Number* (x)sx is a Henkin constant, Ocp(x) and 

( Vy<x)(y a Henkin constant —> s(rx » y"1) = 0; 

Number* (x) & Number * (y) & Number* (z ) 

x +** y = z iff s(rx + y -» z"1) m 1 
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and analogously for successor and multiplication. 

We would be obliged to proTe an "it's snowing1' - it's snow­

ing theorem saying 

lumber* (x ) k.»« —> 
Gfc) 

—> C 9* (xof...)=s.s(cp (x0,...)) • 13. 

But this requires closedneas of Ocp to some operations; 

and we only know that Ocp is closed under successor. The 

alteraatiTe is not to use all Henkin constants of occupable 

Godel no but to restrict oneself to x satisfying another 

non-arithmetical predicate I(x) such that 

(1) I(x)—^Ocp(x) 

(2) I(0)^(Vx)(I(x)-^I(x + 1)) 

(3) I is satisfactorily closed 

is proTable in ACA*. 

SoloTay's analysis shows that (a) under an appropriate 

coding of formulas, it suffices to haTe in (3) Kx) — > 

—>*I(xl06 x) and (b) using Ocp(x), we can indeed define a 

predicate I(x) such that (1) - (3) is proTable. This conc­

ludes the construction of an interpretation of (PA + <p ) in 

ACA; . 

How this interpretation is extended to an interpreta­

tion of ACA as follows: Define 

Class * (x)sx is a (PA)c-formula with just one free Tariab-

le T, I(x) and ( Vy<x)(y is a (PA)C formula with just T 

free—> s(( V T ) ( X S y)) * 0). 

Then (in ACA*) no x is both a number* and a class * i put 

ffumber *(x)& Class * (y) ->> (xe*ysS(y(x)) » 1) 
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where y(x) means formal substitution of the constant x into 

the formula y for the variable v). 

Then the validity of the induction axiom for classes in 

the interpretation is clear (since a is satisfactory and, 

thanks to the sufficient closedness of I, if y is a formula 

as above and I(y) then for the sentence z expressing the 

least element principle for y we have also I(z)). To prove 

arithmetical comprehension in the interpretation it is use­

ful to deal with MGodel operations" as in £21 and to show 

closedness of classes under Godel operations in the sense of 

the interpretation. Here again we profit from the satisfac­

tory closedness of I: if a class t is defined by a formula 

y such that I(y) then the formula defining the result of a 

Godel operation applied to Y must also satisfy I. This con­

cludes our proof-sketch. 

The construction of a promised TT ̂ -sentence in I^Q^ ~ 

- Ip» will be almost immediate from the preceding thrown 

and from the modal considerations of the next section. 

§ 3. Some modal calculations 

3.1. Arithmetical interpretations of some modal propo-

sitional calculi turned out to be a powerful tool for uni­

fying some self-referential investigations and also for so­

me negative results. See 11151, -"131, till, 141. We shall desc­

ribe a modal system as close to that of Smorynski [11] as 

possible. We differ from Smorynski in two aspects: first, 

we want to prove a theorem applying to Ro«ser~like sentences 
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as well as to Guaspari-like sentences, thus we hare to ge­

neralize. On the other hand, in this paper we shall not need 

Sheperdson's generalization of Rosser sentences: in this as­

pect we are less general. 

3*2- Language; Propositional variables p, q»...j prepo­

sitional constants 1 , T . Connectives &,v ,-J , etc.} mo­

dalities O $ A , V # Rosser witness comparisons -4 , ̂  » Cru-

aspari witness comparison ^ . 

3.3. fformulas and S-formulas. Propositional variables 

and constants are formulas; formulas are closed under logi­

cal connectives and modalities. A formula is an 3-formula if 

it begins with a modality (is of the form DA, A A, V A ) . If 

A, B are S-formulas then A. 4 B, k-4 B, A ^ B are formulas. 

3.4. Arithmetical interpretation. For each propositio­

nal variable p, p* is a sentence of PA. Modalities are in­

terpreted by some ^?-formulas with one free variable and 

with just one unbounded existential quantifier. If a modali­

ty 0 is interpreted by oc(x) and if A* = y then (ElA)* » 

SB O C ( Y ) - Necessity D is in this paper always interpreted 

by the formula (3y)(x is proved (in (PA)C) on level y), de­

noted by Pr(x). A and V will be interpreted (1) either 

by the preceding provability formula or (2) by Intp(x) i.e. 

by (J3y)(y is a witnessed interpretation of (ACA. + x) in 

ACAQ) (where a witnessed interpretation is a tuple consist­

ing of formulas defining numbers, classes, basic arithmeti­

cal operations and membership in the aenae of the interpre­

tation and from an ACAQ-proof of the conjunction of inter­

pretations of finitely many axioms axiomati^ing A.CAQ plus 
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of x)j (3) or by (Pr(x) vlntp(x)) (rewritten as a Zl -pfor­

mula with one existential quantifier). 

Hote that Pr uses a fixed binumeration oo of (3?A)C (ta­

ke the natural one); sometimes we shall write Pr,̂  instead 

of I*r. Similarly, Iatp uses the natural binumeration fi (by 

listing) of ACA0i we write Intp^ instead of Intp if neces­

sary. 

The arithmetical interpretation ;* commutes with logi­

cal connectives. 

If A, B are S-formulas, A* « (3y)f (y) (« $> ) and B*-« 

» (olx)%(*) &* T ) then A 4 B and A*V B are interpreted as 

follows: 

U4 B)* • (3y)(T(y)&(Vz^y)n^(2)) 

U X B)* « (3y)(TCy)^(V.i^y)n^ (2)) 

la words, the former formula says that there is a wit­

ness y for $ suoh that no z<y is a witness for *¥ ; simi­

larly the latter. 

The definition of* (A^ B)* (for S-formulas A, B) is a 

bit more complicated. 

Uote that A* can have one of the following three forms: 

^o6 (f >» ^ A (^>» (Pr<*v Int*t3 >(^> 

for some q> . I»et (06+ u)(x) be the formula oc(x)vx » u* 

similarly (fo+ u)(x). Let Tr be the ^ J-truth predicate for 

^ ^-sentences. Then (A ̂  B)* says: 

There is a witness y for -?rc+u(5*) (Intp +̂U(cp ), 
p^ c + u(^) vlntp^+u(§p ) respectively), where u is a true 

iS-j-aentence, such that for no z-try, 2 is a witness for Hf . 

(Recall that Tf » B* #) 
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For example, if A* » Intp« (<̂  ) then (A^ B)* says "fhere 

is a true 2j?-sentence u such that there is a witnessed in­

terpretation y of (ACAQ + ̂  ) in (ACAQ + u) such that for no 

a<y, % is a witness for 3-T ." 

For proTability, we may say that <?> is proTed on leTel 

y in (PA) + u iff each satisfactory sequence s on y such 

that s(u) » 1 giTes s(<p) = 1 (i.e., u1-^ $p is proTed4 on 

leTel y in (PA)C). 

In particular, if p* Is 9 then (On jir^Dp)* is 

(3y)(-i<p proved on level y&( v*z<y)C <ip not proved on le­

vel z) and ( D i p ^ i p ) is (3y) (for some true S?^senten­

ce u, u -^-ijp proved on level y&(V»<y)(cp not proved on 

level z). 

This completes the definition of an arithmetical inter­

pretation * of modal formulas. 

Remark, fhe reader acquainted with 133 and/or 1X21 will 

now see why *-.? is called Gfuaspari witness comparison: simp­

ly because witness comparison is combined with truth defini­

tion for 2J ̂ -formulas. (But apparently not all of our fixed 

points using ̂  are particular oases of Smorynski's *Guas-

pari sentences of the first kind".) 

3*3. Axioms for modal formulas* 0 Taries over D 9A 9 

V ) £. Taries OTer 4 , -< , & . 

(Al) Propositional tautologies 

(A2) Xecessitations of tautologies 

(A3) A — > p A, A£B ->D(A£B) for all S-formulas A, B 

(A4) D ( A - ^ B ) - * ( D A — > D B ) for all A, B 

(A5) ACB—>A$ A,^ B — > A ^ B : A4B-> A=$ B 
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gKAvB-*- (A4B==-i (B-<A))) for all S-formulas A, 3 

(A6) (Q(A9:B)8<B) —•A for all S-formulas A, B 

(A7) i ( D A - ^ 0 A ) for any A 

(A8) D (A —» B) —=> ( 0 A —> 0 B) for any A, B 

(A9) ( 0 A —>-*a~ir\) for any A 

(A10) Q(A—>-»D i A ) - > D~\ A for any A 

The only deduction rule is modus ponens. This conclu­

des the definition of our (tentative) modal calculus. 

Remark. (Al) - (A5) - (A7) - (A8) are like in Smoryi-

ski llll. The axiom (A6) is important for £ "bexng ^ j 

for -=. being 4 or -4 it is easily derived from the remain­

ing ones. (A9) is Smorynski's superconsistencyj (A10) is 

Godel's second incompleteness theorem. 

3.6. We shall show that each arithmetical interpreta­

tion of each axiom is provable in (PA + Conp.) (pedantical­

ly, in (PA + Con^); note that by our choice of oc and (2 

we have PA I— Con^— Con^ ). 

Everything is clear except (1) A ^ B —> A and (2) 

(QU.2 B)8.B)--^ A. 

(1) Pirst let A* be Pr o C(^). Reason in PA. Evident­

ly, (A^ B ) * implies (3u)(u true ^ ° , & is ((PA)C + u)-

provable). But since each true -2*1°-sentence is (PA)c-pro-

vable, we have Pr o C(^). If A* is Intp^ (g> ) then we rea­

son in PA as follows: ( 3u)(u true %^» (ACA + ̂  ) inter-

pretable in (ACA + u)). But since each true .^5?-sentence 

is ACA -provable, there is an interpretation of (ACAQ + ̂  ) 

in AC A . For Pr^ v Intp^ argue similarly. 
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(2) Let B* be (3z)^(z)i first, let A* be Pr^ (f ), 

Let b be a witness for (3 z) %(%)• Then ^(b) and 

P r o C ( ( 3 y ^ b ) ( . 3 u true 2,J)(?is (?AC + u)~proved on l^vel 

y))„ Let 6lt + ..9&n be all ̂  ^-sentences such that ur->^ 

is (PA)c-proved on & level £ bj we have Pr^ (.£v<- True( «ri))f 

thus Pr^ ( V e . ) , Proc( V ^ — * $ P ) and hence Pr^ (cp)% 

For A* = Intp^ (<jp ) the proof is similar. (Hote that if 

i-p...,! are interpretations of (ACAQ + cp ) in (ACAQ + 6±) 

then they can be combined into a single interpretation i of 
no, 

(AOA0 + p ) in (ACA0 + A ^ e±).) 

Lemma 3.7 (Till ) . U (AsB)—* ( 0 A s JZ1 B) 

3.8. Main theorem. Let S be .^ or ^ and assume 

[S(p s ( A -i P £ V p)). 

(1) Prom th i s assumption, the following is provable in our 

logic; 

~»P, "I D p , - i P - i p , A n P —*- V P 

(?) If, moreover, £ i s -^ then the following is provable. 

- iVp , I A I P , D ( p ~ ^ i ( V p ^ A - i p ) ) , i D h V p - l A n p ) 

Proof. (1) Let A be ( A i p s V p ) * 

(a) pKA h D A (by (A3) H- D p (lemma)p n A ~i p (A9) 

p h A h A i p (by A5) 

Thus p n contradiction, hence *~ ~i P* 

(b) D P r - P A 8 c V p (Lemma and A7) I - A ~» P U6) 

D P H " i A " i p (A9) 

(c) D - i p r - A i p t - ( A n p £ y p ) v ( V p £ A - i p ) H 

H 7 p S A i P h 7 p i 

D n p h - n V i * ) P h - i V p 

681 



(d) / i i p h V p as in (c). 
(2) 

(a) vrph-(A-»p4Vrp)v(7p-(A"-ip)H(7p-< Anp)H 
r - D ( V p ^ A i p ) h D(^(^np-4Vp))HD-»p, hut 
h i D i p * 

(b) H D ( p ~ > ( A - i p 4 7p)), and h D ( ( A - i p ^ V p ) - ^ 
—>-r(Vp-<A-ip))f thus h D ( p - ^ i ( 7 p ^ A - i p ) . 

(c) D ( - I ( 7 P - < A - I P ) ) H D ( V P - ^ ( A - I P ^ V P ) ) 

h D ( V p - ^ p ) 
r-Q(~ip —*-iVp) 
h D ( i p - > n D p ) 

r - D d n p ) 
hDp, a contradiction. 

3»9» Corollary, Fix one of possible meanings of A $ V 

and S. . Let 9? he a fixed point such that the arithmetical 

interpretation of p by 9? makes S (p a. ( A ~ . p £ \ 7 p ) PA-

provable. Ehen 

(1) fP is false, g? is unprovable, ig> is unprovablej 

if -igp> is A then g? is V • 

(2) If s is 4 then 9? is not V f n<p is not A and 

<p is TT°~nonconservative: the sentence interpreting 

~i (Vp -4 Anp) shows it. 

3*10* Remark. If £ is -̂  and we succeed to show that 

fp is not V (so that, consequently, ig> is not A ) then <p 

is TTj-conservative: Let & be a 2-J °-sentenoe such that 

PAh-g?—>-»€? , i#e. PA I— cf —>-i<p $ then let d be a witness 

pectively (choose according to the meaning of A )• Argue in 
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(PA +-igp ): If & were true then beneath d there would be 

a witness for Vp, since there is no such witness, 6" must 

be false. We have proved ~\€ in (PA +n^>). 

§ 4* Interpretability in PA versus in ACA . Investiga­

tions of § 2 and § 3 yield almost immediately examples of 

seven types of independent formulas. Let us begin with TT?-

nonconservative <p , i.e. <f> 4 IpA* 

4#1. <p =-? (n-icp4 QfP ) (Solovay). Obviously, #> is 

independent. We show that (ACAQ + ~i qp ) is interpret able in 

ACA0. It suffices to find an interpretation in (ACA0 + g> ). 

Argue in the last theory. There is a witness for £3~ig> * 

call least such witness nQ. Clearly, nQ is not occupable (see 

2.5 and 2.6). Consider n - 1: it is not a witness for Qg? 9 

thus there exists a satisfactory sequence s on n - 1 such 

that s(g?) » 0. How 2.9 applies. 

This is how Solovay constructed his example (except that 

he did not formulate explicitly 2.9)- Observe, furthermore, 

that (ACAQ + J? ) is interpretable in ACA0. Since (ACA@ + 

+ -i 0onACA ) is interpretable in ACA0 (of. e.g. tl63) it 

suffices to find an interpretation in (ACAQ + n ConACA + 
o 

+ -i g? ), but the last theory proves Q <p -< Q i cp . .Let nQ be 

the least witness for Dg> and continue as above. Thus g> 

is of type (l)(from 1.3). 

In the sequel, let A denote the modality of interpre-
A 

tabllity and let Q denote disjunction of provability and 

interpretability. 
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4.2. <f 2 ( D i g > 4 D j > ) . 

Clearly, n <p 4 *ACA * w e 8 n o w *kftt S> * XACA # A ^ a i n 

o o 
i t suffices to interpret (ACA + cp ) in (ACA + ~i CoaACA + 

o ° o 

+ -i$>). The last theory proves (Og>-< D-ig> ); *«* »0 "be 

the least witness for P y • Then nQ is not oecupable and 

n0 is neither a witness for A~ig? nor a witness forD~iy. 

Thus there is a satisfactory s on nQ such that a(g>) » 1. 

Apply 2.9. Thus g> is of type (2). 

4.3. <P = (D~ig» 4 D ^ ) . 

Clearly, <p <£ I AQ A • $o prove (ig? )e I AQ A argue in 

(ACA0 + 9 ) as in (1). Thus 9? is of type (3). 

4#4# y s s ( A ~ . c p 4 A 9 ) (Hijek £63). 

Clearly, <p , (~i 9 )£ IACA . Thus g<> is of type (4). 

How let us consider fixed points with --3 * recall 3.10 

telling that, if we prove that <p is not V then $> is TT ̂-con­

servative, i.e. g> e lpA. 

4.5. cp 3 (D-i p -̂  Dcp). 

Clearly, $p is independent. This already shows that g> 

is TT ̂ -conservative. We show that (ACAQ + -j<p ) is inter-

pretable in (ACA0 + <p ). Argue in the last theory. Let n 

be the least number such that for some true ̂  ?-sentenoe u, 

u —> -icp is proved on level nQ. If nQ is oecupable, 

Tr(Z,n0), then necessarily 2(u,0) » 1 (see 2.7) and 

Z(~i§> ,0) « 0 (see 2.6), thus for the true satisfactory se­

quence we have s(u —> -1 <p ) =- 0, a contradiction. This shows 

that nQ is not oecupable and n is not a witness for Qg> ; thus 

there is an s on n - 1 such that s(-t<p > = 1. Apply 2.9. 
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T© prove that (ACA0 + 9 ) is interpretable in ACAQ, 

consider (ACA^ + n CoaACA + ~»p ) * the last theory proves 

Dg> ^ P i ? (since ~i Con implies ( D - i g M D c p ) v 

v( D#> -4 0~i£> ) which implies (Q-i<p<£ Qg> ) v 

v ( D j > - ^ D i 9 ) ) # OJhus proceed analogously. We see that 

g> is of type (5). 

4.6. SPsDi^^D?. 

Again, g> being not Q , <p is TT^-con. Consequently, 
A 

—»<p i s not O and hence not A f i . e . (ng> )^I^rjA * ^° 
o 

prove <p e IAQA consider (ACA + "nGoaACA + "̂ !̂  ) a s above. 
o o 

Thus g> i s of type (6). 
A . 

4 .7. <p s (a~~iq> & D p). 

We prove g> 4 *ACA * Assume ^ e contrary and let i be 
o 

the least witness for Ag> . Work in (ACAQ + p ). Arguing as 

in the second half of 3.$ we show that ng> is provable (in 

PA), which is a contradiction. Thus indeed p 4 *ACA * Con~ 
A 0 

sequently, g> is not D and therefore y is TTJ-con. To 

show that (ij))€ I A C A , argue in (ACAQ + g> ). Let nQ be the 

least number such that u — > i p is provable on level n0, 

where u is true SiJ-sentence. As in 4.5, show that n0 is not 

occupable. Continue as usual; g> is of type (7). 

4.8. tofortunately, the author was unable to show that 

the fi3Q>oint <p ~{ hi<p ^ Aq> ) (or similar fixpoints with 

some A replaced by D ) is of type (8). This is definitely 

a fault of beauty* but this gives us an opportunity to pre­

sent an entirely different method due to Lindstrom 181. Our 
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proof is a combination of his proofs of Theorem 2 and Theo­

rem 5. (I was suggested by Svejdar to try to use LindstxiSn^s 

Theorem 2.) 

We are going to construct a formula of type (8) as 

n Con , where «/ is an appropriate PR-binumeration of PA. 
<-C 

Let oo be the natural binumeration of PA and for each PA-

sentence cp , let ool<pl (x) 35 (06 (x) & beneath x, there is 

no Q-proof of J" ). (Q is the usual finite subsystem of PA.) 

Put 
f(j> ) - n Con^-j , ̂  • ^ 1 f(*)eIACA0*»

 Y2 a *» * 

T«Ty J^ACA*-o 
Claim. I f Q 1 - 1 9 then cp$ Y i u Y 2 » t l i u a Y l u Y2 i s a o ~ 

no-consistent with Q i n Lindstrom's terminology. 

Proof of the claim. I f Q *-1 <p then PAi-Coi^r^^j , thus 

ACA h - i f ( y ) and f(<p)t£IA (-A . Furthermore, PA i~ rQ H -I j p 
o 

thus PA. H rQ r/-^?"1 ( s ince PA H COIIQ) and hence ACAQ H-

h o c C j ) ] - ? 06 f thus ACAQ H Con^ r^j = Coa^ , which implies 

Con £ - 4 --AcA • k̂® claim i s proved. 

By [8] Lemma 1, there i s a <p such that ne i ther g> nor 

ng> i s i n Th(Q)uY 1uY 2 (where Th(Q) i s the s e t of a l l f o r ­

mulas provable in Q). We show that f(-icj> ) i s our formula of 

type ( 8 ) . F i r s t , we have f(-]<p ) * ~l Coi-oC,r(>)j • Since Q {-/-<£>, 

ocZcpl l?inumerates PA and hence ( 1 ^on^t^ e P̂A ^**m --13)* 

Second, ( -19 ) ^ Y 1 , thus f H g * )4IACA i t l l i r d t ? 4 Y2» t l m s 

o 

-itincp )4^xck " Illis concludes the proof. 

4.1 - 4.8 prove the following 

4.9. Main theorem II. Bach type (from 1.3) is non-empty. 
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4.10. Remark * After having read a preprint of this pa­

per, Lindstrom gave simple alternative proofs of existence 

of sentences of types (2),(3),(4),(6),(7), assuming existence 

of sentences of type (1) and (5)i his proofs use results of 

[8]. I present my original proofs since I believe that modal 

considerations of § 5, which make explicit the modal nature 

of proofs of existence af seateaces of type (1) and (5), are 

of independent interest as a contribution to arithmetic in­

terpretations of modal logic, and having our main theorem 

3.8, proofs of existence of seateaces of types (1) - (7) are 

reasonably simple. 
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