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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,4 (1981)

ON INTERPRETABILITY IN THEORIES CONTAINING ARITHMETIC i
Petr HAJEK

Abstract: Investigated are Peano arithmetic PA and its
conservative extension ACAO using classes. (Instead, one

could speak on set theories ZF and GB.) Ip, (and I,;, ) deno-
o
tes the class of all PA-sentences ¥ such that (PA + ¢ ) is
relatively interpretable in PA ((ACA  + @) 1is relatively in-
terpretable in ACAO). Independent :Eg sentences @ are clas-
sified according to whether @ € Ip,, 9€ I)n) (e ) e
()

€ IACAO’ (Note that 71 can never be in Ip,.) This gives

eight types of independent 23; sentences; it is shown that

each type is non-empty. This subsumes and completes most
known results on the relation of IPA and IACA . Main results
o

are obtained by combining and generalizing methods of Solovay
and Smorynski; a generalized fixed point calculation for a
modal propositional calculus, which seems to be of independent
interest, is presented and heavily used.

. Key words: Relative interpretability, modal logic, arith-
metic

Classification: 03F25, 03B45, O3F30

§ 1. Introduction

1.1. Let PA be Peano arithmetic and let ACA, denote the
second-order theory with two sorts of variables (number vari-
ables x,y,... and class variables X,Y,...) having axioms PA

minus the induction schema for number variables, & new predi-

cate € such that teZ is well formed iff t is a number term
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and X is a class term and two groups of second order axioms:

Arithmetical comprehension: for each formula ¢ in whiech
no class variable is quantified and which does not contain
the variable X, the following is an axiom:

(AXN(Vx)(xeX =9 )

Induction axiom:

(0eX&(Vx)(xeX— S(x)eX)) —> (Vx)(xeX).

It is well known that ACA, is a conservative extension
of PA (each model of PA is expandable to a model of ACAO) anc
that ACA  is finitely axiomatizable (imitate the proof of
Metatheorem 1 in [2]). Thus we can claim that

PA:ACAO = ZF:GB
where ZF and GB is the Zermelo-Fraenkel and Godel-Bernays set
theory. And indeed, our resulis remain v;;lid if we replace
the pair (PA,ACAO) by (ZF,GB) or another similarly related
pair of theories containing PA. But since our investigation
concerns PA-sentences we shall speak on PA and ACAO.

1.2, For each theory T containing PA, let I, denote the
set of all PA-sentences ¢ such that (T + o) is relatively
interpretable in T in the sense of Tarski, Mostowski and Ro-
binson [17]. Let us survey the known facts on Ip, and IACAO’

0
(1) Ip,#* IACAO; Ip, is Wz-complete (Solovay [141) but

IACAO is recursively enumerable.

(2) Ip, - Iy #0. In[5), & T 7 sentence g is con~
)

structed such that ¢ € Ip - I,q A, provided PA is @ -consis-

tent; in [ 7] the assumption of o -consistency is replaced by
that of (mere) consistency. Solovay exhibited a = J sentence
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¢ e Ipy = Iya, (ef. 110]). Lindstrom independently show-
(]
ed that for an appropriate binumeration o« of PA, the Eg

sentence —1Con, is in Ip, = I, Lindstrom also const-
°

ructed a TTg sentence ¢ such that both ¢ and 7@ belong
to Ip, - IACAO (see [81).

(3) IACAO - Ip,¥0. In[6] it is shown that if this

difference is non-empty then it must contain a TT; senten-
ce; Solovay constructed such a sentence [14]. His proof will
be sketched and analyzed below.

(4) The following are equivalent: (i) @ € Ipys
(i1) o is TT; conservative (ng-con), i.e. for each 'lT-I
sentence gr (PA + @ )+ implies PAH3Ir ; (iii) for each
n, ?PA1»00:1'1(1,“31)+§ (where PAM n denotes the set of all axi-
oms of PA that (i.e. whose GOdel numbers) are less than n).
See [3],[6], Consequently, if o is a TT; sentence and @ €
eIy, then PAF o -

1.3. The above lead to the question what possibilities
we have for independent 2]"_ sentences @ according to the
questions whether @€ Ip,y € I, » (T )eIyq, (If @

° o

is an independent E‘.g sentence then necessarily (—¢ )¢IPA.
see the end of 1.2. Logically, we have eight types:
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Pelp, 9 Ixca, (hgle Taca,
1 no yes yes
2 no Yes no
3 no no yes
4 no no no
5 yes yes Yes
6 yes yes no
7 yes no yes
8 yes no no

We shall show that there ars formulas of all these eight ty-

pes.
1.4. Now let us make some preliminary observations.

Pirst it is easy to see that the formula —1Con_ (where oc
is the natural PR-binumeration of PA) is of type 6, since
we have PAr—(Conuo:; C°nACA°) (here c‘mACAO is expressed us-
ing the finitely many axioms sufficient to axiomatize ACA.);
it is easy to show (-1Con, )e Ip,, (T1Comyq, )€ IACAO'
°

ConACA:F IACA° (¢f. [11,[161). But we shall show another sen-
tence of type 6 below.

Second, observe that a formula ¢ of type 7 has the ni-
ce property that e - and el - Ios
e property that @ & Ip, - Iygy (7@ )€ Thoa = “pad

thus @ ‘1! a E; sentence showing that Ip, - IACAD is nen-
empty and 19  is a TTJ sentence showing that Iygy - Iy

is non-empty.
Third, we should make clear what means will be used in

our proofs. Main tool for showing that semething is in ACA,
will be the Solovay’s method described below. Main tool for
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showing that somethimg is unprovable or is not in IACAo will

be a generalized Smorynski’s fixed point calculation for fi-
xed points defined by means of arithmetically interpreted
modal logic. Bo show that something is or is not in IPA’ we
shall show that the formula in question is or is not ﬁcl’-eon.
And in one case, where these methods fail, we shall imitate
a construction due to Lindstrom.

1.5. Most of our (non)interpretability results will
follew rather quickly and easily from Soloveq'a construction
and from our generalization of Smoryﬁski'a fixed point calcu=
lation. The contribution to arithmetical interpretations of
modal logics presented in § 3 is hoped to be of independent
interest. Note that § 3 does not depend on § 2.

§ 2. Solovay’s comstruction analyzed

2.1. Solovay constructed a TT] sentence e IACAo -

- Ip, (in fact, in Igg - IZF) in 1976; a full proof is con-
tained in a leiter by Solovay to the present author. Since
[14] has still not been finished, we shall give here a more
or less detalled sketch of Solovay’s proof in a form that
enables us to obtain some general consequences concerning
I,ca- This is done with kind permission of Prefessor Solovay.
2,2, First, Solovay uses a rather specific provabili-
ty predicate related to Herbrand’s analysis. Let (PA), be
the conservative extension of PA having the following pro-
perty: For each sentence (I x)y (x) of (PA), there is a
witnessing constant ¢@Ex)y(x) of (PA) ¢ Such that the follow-
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ing witnessing axiom is an axiem of (PA),:
(dx)¥ (x) — ©(3x)y(x) 18 the minimal x such that ¥(x).

Let A(PA) be the set of closed instances of axioms of
(PA)c, of equality and identity axioms and of the logical
axioms (V x)y(x) —> % (t)., Then we have the following lem-
ma ([9] p. 49):

Let ¢ be a closed formula of (PA) . Then (PA)c — @
iff ¢ 1is a tautological comsequence of A (PA).

Following Solovay, cell a gsatisfactory sequence on n
each function s associating with each (PA)c sentence less
than n zero or one such that s commutes with logical comnnec-
tives and gives the value one to each element of A (PA).
Then evidently we have the following:

Let 9 be a closed formula of (PA)c. Then (}E’A)c - @
iff there is an n such that for each satisfactory sequence
s on n we have s(gp) = 1.

Say that ¢ is proved on level n if each satisfactory
8 on n gives value 1 to ¢ . From now on, saying "¢ is
provable™ for a (PA) c-formula. ¢ we shall always mean "the-
re is en n such that @ is provable on level n".

2.3. Let us work in ACA  extended conservatively by
adding witnessing constants from (I’A)c and the correspon-
ding witnessing axioms. Let us make the following defini-
tion: A class Z is a satisfaction relation on j (in sym~
bols: Tr(Z,j)) if (roughly)Z is a function associating (1)
with each pair (t,u) where t is & term of (PA)c whose Go-
del number is less that J and u is a sufficiently long se-
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quence of numbers a number and (2) with each pair (a,u)
where a is a (I-’A)c formula whose Godel number is less than
n and u is a satisfactorily long sequence of numbers a
truth value O or 1 such that

(a) Z(xj,u) = (u)j, Z(tl + ty,u) = Z(tl,u) + Z(tz,u) etec.,
(v) Z(tl = tz,u) =1 iff Z(tl,u) = Z(t2,u) and

(¢) +the obvious Tarski’s conditions for truth of composeb.
formulas are valid.

Boring details of elaboration of this (evident) defini-
tion are left to the reader,

2,4, The following lemme is obvious:

Lemma. (1) (32)Tr(2,0)

(2) (32)rr(z,j) — (32)Tx(2,j + 1)
(3) Tr(29,37) & Tr(2,,35) % 3£ 35, —> 29€ Z,.

Caution: But the statement (V j)(3 2)Tr(Z,j) is unpro-
vable in ACA, (pedantically: in ACAo)c) since it implies e~
vidently Con, where o is the natural binumeration of PA.
This shows that the induction scheme

(¢ (0) &(V x)(y(x) = ¢ (S(x)))— (V x)y (x)

is unprovable in ACA, (which is well known).

2.5. In ACA,, assume Tr(Z,j). Then Z defines a true

satisfactory sequence s on j - restriction of s to pairs

(a,f) where a is a (PA)c-sentence, atj. Thus: if ¢ is pro-

ved of level n and Tr(Z,n) then ¢ is true, i.e. Z(@,d) = 1.
2,6, "It’s snowing" - it’s snowing-metatheorem: Let ¢

be a (PA)c—formule whose Godel number is less than Jj. Then

KCK v Tr(Z,J) — @lxgsees,x ) @B (x ;0. ,x ) 1XgreeosXp)= 1.
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(Proof by induction on the length of @ .)

2.7. Let Tr (x) be the = ’-predicate of PA which is
a truth predicate for E‘.g-sen‘cences constructed in the usu-
al way; in particular, we have PAl @ = Tr, (%) for each
=0

n sentence @ . We have the following lemma:
Lemma (in ACA ). Let a ¢ =D and let Tr(Z,x) where x
is the Godel number of a. Then Z(a,@) = 1 iff Tr,(a).

(By induction on a.)

2.8 (cf. [181). Say that n is occupable (Ocp(n)) if
(32z)rr(z,n). By the above, Ocp(n) is not equivalent to any
formula not containing bound class variables. The heart of

Solon,y'l construction is the following theorem:

2.9. Theorem. Let ¢ be a PA-formule and let ACA] be
an extension of ACAo such that ACAO' proves "there is a sa-
tisfactory sequence s of non-occupable length such that
s(g) = 1". Then (ACA  + ¢ ) is interpretable in ACA_.

Sketch of the proof: Pirst we define an interpretatiom
of ((PA), + @ ) in ACAJ and then extend it to an interprete~
tion of ACA,. The first idea is: consider values a{a) for
occupable a (pedantically: for a of occupable Godel no.) -
this gives something as & complete Henkin extension and one
could try to use it for a definition of an interpretation of
PA putting
Number* (x)=x is a Henkin constant, Ocp(x) and

(V¥ y<x)(y a Henkin constant —> s(*x = y') = 0;
Number * (x) & Number * (y) & Number * (z )

x+*y=zitfs((x+y=2") =1
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and analogously for successor and multiplication.
We would be obliged to prove an "it ‘s snowing" - it ‘s snow-
ing theorem saying

Number* (x)&... —>

— [ga* (xo,...):—'—:s(QT (xo,...)) =11,

But this requires closedness of Ocp to some operations;
and we only know that Ocp is closed under successor. The )
alternative is not to use all Henkin constants of occupable
Godel no but to restrict oneself to x satisfying another
non-arithmetical predicate I(x) such that

(1) I(x)—> Ocp(x)

(2) 1(0)& (Vx)(I(x) —> I(x + 1))

(3) I is satisfactorily closed
is provable in ACA;.

Solovay s analysis shows that (a) under an appropriate
coding of formulas, it suffices to have in (3) I(x) —
—> I(x1°8 Xy ang (b) using Ocp(x), we can indeed define a
predicate I(x) such that (1) - (3) is provable. This cone-
ludes the construction of an interpretation of (PA + ¢ ) in
ACAZ.

Now this interpretation is extended to an interpreta~
tiom of ACA  as follows: Define
Class* (x)=x is a (PA) o~formula with just one free variab-
le v, I(x) and (Vy<x)(y is8 a (PA)c formula with just v
free —> s((Vv)(x=y)) = 0).

Then (in ACA;) no x 1is both a number* and a class®; put
Number * (x) % Class * (y) — (xe*y=S(y(x)) = 1)
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where y(x) means formal substitution of the constant x into
the formule y for the variable v).

Then the validity of the induction axiom for classes in
the interpretation is clear (since a is satiafactory and,
thanks to the sufficient closedness of I, if y is a formula
as above and I(y) then for the sentence z expressing the
least element principle for y we have also I(z)). To prove
arithmetical comprehension in the interpretation it is use-
ful to deal with "Godel operations"™ as in [21 and to show
closedness of classes under Godel operations in the sense of
the interpretation. Here again we profit from the satisfac-
tory closedness of I: if a class Y is defined by a formula
y such that I(y) then the formula defining the result of a
Godel operation applied to Y must also satisfy I. This con-
cludes our proof-sketch.

The construction of a promised Ttg-sentence in Ip0p -
o

- IPA will be almost immediate from the preceding theovenm
and from the modal considerations of the next section.

§ 3. Some modal calculations

3.1, Arithmetical interpretations of some modal propo-
sitional calculi turned out to be a powerful tool for uni-
fying some self-referential investigations and also for so-
me negative results. See [151,[131,1111,14]. We shall desc-
ribe a modal system as close to that of Smorynski [11] es
possible., We differ from Smoryﬁski in two aspects: first,

we want to prove a theorem applying to Rosser-like sentences
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as well as to Guaspari-like sentences, thus we have to ge~
neralize. On the other hand, in this paper we shall not need
Sheperdson's generalization of Rosser sentences: in this as-
pect we are less general.

3.2. Language: Propositional variables p, q,...; DPropo-
sitional constants L, T . Comnectives &,v,7, etc.; mo-
delities O , A , V . Rosser witness comparisons %, < ; Gu-
aspari witness comparison < .

3.3. Formulas and S-formulas. Propositional variables

and constants are formulas; formulas are closed under logi-
cal connectives and modalities. A formula is an S-formula if
it begins with a modality (is of the form DA, AA, VA). If
A, B are S-formulas then A % B, A < B, A< B are formulas.
3.4. Arithmetical interpretation. For each propositio-
nal variable p, p* is a sentence of PA, Modalities are in-
terpreted by some =)J-formulas with one free variable and
with just one unbounded existential quantifier. If a modali-
ty B is interpreted by oc(x) and if A* = y then (@A)* =
= o (¥ ). Necessity [0 is in this paper always interpreted
by the formula (3 y)(x is proved (in (PA),) on level y), de-
noted by Pr(x). A and ¥V will be interpreted (1) either
by the preceding provability formula or (2) by Intp(x) i.e.
by (I y)(y is a witnessed interpretation of (ACA ) + x) in
ACA,) (where a witnessed interpretation is a tuple consist-
ing of formulas defining numbers, classes, basic arithmeti-
cal operations and membership in the sense of the interpre-
tation and from an ACAo-prooi’ of the conjunction of inter-

pretations of finitely many axioms axiomatizing ACA  plus

- 677 -



of x); (3) or by (Pr(x) vIntp(x)) (rewritten as a = g—foh.
mula with one existential quantifier).

Note that Pr uses a fixed binumeration o« of (PA), (ta-
ke the natural onme); sometimes we shall write Pr,. instead
of Pr. Similarly, Intp uses the natural binumeration 3 (by
listing) of ACA ; we write Intpﬂ instead of Intp if neces-
sary.

The arithmetical interpretation X commutes with logi-
eal conmnectives.

If A, B are S-formulas, A¥ = (Fy)y(y) (=% ) and B*=
= (3x)%(8) ¢= ¥ ) then A< B and A~ B are interpreted as
follows:

(A B* = (Iy)(w ()& (Vz<y) 1y (z))
(A< BY* = (Ay(y (& (Vzey)x (3)

In words, the former formula says that there is a wit-
ness y for § sueh that no z<y is a witness for ¥ ; simi-
larly the latter.

The definition of* (A2 B)* (for S-formulas A, B) is a
bit more complicated.

Note that A* can have one of the following three forms:

Pr (F), Intpy ($), (Prev Intpg ) (P)
for some @ . Let (cc+ u)(x) be the formula oc(x)vx = u;
similarly (P + u)(x). Let Tr be the Eg-truth predicate for
= g—éentences. Then (A 4 B)* says:

There is & Witness y for Prca»u(?) (Intp,“u(‘g} R
Prou_u(?)vlntpﬂ_'_u({?) respectively), where u is a true
Zg—sentence, such that for no z<y, z is a witness for ¥ .

(Recall that ¥ = B¥.)
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For example, if A¥* = Intp 5 (F) then (A2 B)* says "There

is a true zg-eentance u such that there is a witnessed in-
terpretation y of (AGAo + %) in (ACAo + u) such that for no
3<y, z 18 a witness for ¥ ."

Por provability, we may say that ¢ is proved on level
¥y in (PA) ¢ t u iff each satisfactory sequence 8 on y such
that s(u) = 1 gives s(g) =1 (i.e., u™=> P 1is proved on
level y in (PA)c).

In particular, if p* is ¢ then (O~ p3Op* is
(2y)(1P proved on level y&(Vz<y)( & not proved on le-
vel z) and (O p<-1p) is (3y) (for some true Zi’—sentcn—
ce u, u—>"1p proved on level y&(Vz2<y)( P not proved on
level z).

This completes the definition of an arithmetical inter-
pretation xx of modal formulas.

Remark, The reader acquainted with [ 3] and/or [12] will
now see why =& is called Guaspari witness comparison: simp-
1y because witness comparison is combined with truth defini-
tion for 2§—formzlas. (But apparentily not all of our fixed
points using <@ are particular cases of Smoryhski’s "Guas-
pari sentences of the first kind".)

3.5. Axioms for modal formulas. (A varies over O ,A ,

V ;3 € varies over =% ,< , <& .,

(A1) Propositional tautologies

(A2) Necessitations of tautologies

(A3) A—> O A, ASB —>[J(ASB) for all S-formulas A, B
(A4) QO(A—>B)— (OA—>(B) for all A, B

(AS) ACB-—>4; AR B—>A<23B; A{B—>A=B
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B(AvB—> (ARB =" (B44))) for all S-formulas A4, 3
(a6) (O (ASB)&B) —> A for all S-formulas 4, B
(A7) B (OA—> @A) for any A
(a8) OMA—>3B8)—> (B A — AB) for any A, B
(49) (0O A —"{d14) for any 4
(A10) TO(A—>~0O 7 A)—> O A for any A

The only deduction rule is modus ponens. This conclu-

des the definition of our (tentative) modal calculus.

Remark. (A1) - (A5) - (A7) - (48) are like in Smoryn—
ski [11). The axiom (A6) is important for & being £

for S being £ or 4 it is easily derived from the remain-
ing ones. (A9) is Smoryndski’s superconsistency; (A10) is

Godel’s second incompleteness theorem.

3.6. We shall show that each arithmetical interpreta-
tion of each axiom is provable in (PA + Congp,) (pedantical-
ly, in (PA + Con, ); note that by our choice of o¢ and (3
we have PA Con, = Cong).

Everything is clear except (1) A< B —> A and (2)
(O(a2 B)XB)—> A.

(1) First let 4* be Pr, (P ). Reason in PA. Evident-
1y, (A= B)* implies (3u)(u true =3, & is ((PA), + u)-
provable). But since each true Zg—sentence is (PA) ~pro-
vable, we have Pr. . (g ). If A’: is Intp,y (P ) then we rea-
son in PA as follows: ( 3u)(u true 2;, (ACA, + @) inter-
pretable in (ACAj + u)). But since each true Zg-sentence
is ACA -provable, there is an interpretation of (achy + @)
in ACAO. For P:g;’c v Intp A argue similarly.
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(2) Let B*¥ be (3z)7(z); first, let A% ve Pr (7 ),
Let b be a witness for (3 z)y(z). Then x(b) and
Pr  ((3y£1)(3u true Z‘Jg)( & is (PA, + u)-proved on level
¥)). Let 61,..., Sn be all = g—sentences such that u=—>9

n
is (PA),-proved on & level £ b; We have Pr (;Y) True(s))),
thus Pr_, ( \/61), Pr, ( Vé’i———’?ja' ) and hence Pr (& ).

For AX = Intpp (P ) the proof is similar. (Note that if
i)s..,1, are interpretations of (ACAo +® ) in (ACA, + 6;)
then they can be combined into a single interpretation i of
(ACA, + @) in (ACA, + 3\ 6;).)

Lemma 3.7 (I111). DO (A=B)— (A A = @ B)

3.8, Main theorem. Let & be =% or < and assume

Bp=(A-pc Vp)
(1) Prom this assumption, the following is provable in our
logic:
ap, 0P, " p, ATp—>VD>D

(2) If, moreover, < is =X then the following is provable:
9V Dp, AP, Op—>1(Vp< A-aDp)), 50 VD 4<Ap)

Proof. (1) Let A be (A-1p< Vp).

(a) prAFDOA (by (A3) - Op (lemma) -1+ A 11 p (A9)
pHAE A 1 p (by A5)

Thus p + contradiction, hence + ™ P.

(») O pr—DAZVp (Lemma and A7) — A 7 p (46)
O pr+=-1Ap (A9)

(¢) D p-A-p-(AapcVp)v(VpeA-ip)
=Y ps A p+Vp;
Op-aVA I pH-aVe
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(@) A-prVpasin (e).

(2)

(a) Vpr(A-p3VPIVv(VPpLAaD)-(Vp< A-p)+
FO0(Vp<Ap)- O (A~ p4Vp))-O~p, but
=10 p.

®) FO@G-—=>(A-r4Vp)), and —O((Ap<LVp)—>
—>=1(Vp <A-p)), thus D (p—> = (Vp<LA-p).

(e) O (Vp<LAP))—~D(Vp— (Aap4Vp))

—D0(Vp—p)
FO(ap—Vp)
—0(~p—-D0p)
+D(ap)

FOp, a contradiction.

3.9. Corollary. Fix one of possible meanings of A ,V
and € . Let ¢ be a fixed point such that the arithmetical
interpretation of p by g makes B (p= (A-p<sVp) PA-
provable. Then

(1) @ is false, P 1is unprovable, 1@ 1is unprovable;
ifp is A thengpis V.

(2) Ifc is 4 then@ isnot V , 71® ismnot A and
@ is ng-nonconservative: the sentence intexpreting
1(Vp<4A-p) shows it.

3.10. Remark, If € is <! and we succeed to show that
@ is not V (so that, consequently, 1@ is not A ) then @
is TT{-conservative: Let & be a =ij-sentence such that
PAFrp—>"6 , i.e. PA-&—>1@ ; then let d be a witness
tor Pr  5(0% ), Intpy,5(1P )y (Pr 5 vIntp, 3)(25 ) res-
pectively (choose according to the meaning of A ). Argue in -
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(PA +119): If & were true then beneath 4 there would be
a witness for Vp; since there is no such witness, & must

be false. We have proved 16 in (PA +119).

§ 4. Interpretability in PA yersus in ACA . Investige-
tions of § 2 and § 3 yield almost immediately examples of
seven types of independent formulas. Let us begin with Trg-
nonconservative ¢ , i.e. ¢ ¢ Ip,:

4.1. ¢ =(0¢p%$ 0@ ) (Solovay). Obviocusly, ¢ is
independent. We show that (.A.CJLo + ¢ ) is interpretable in
ACA . It suffices to find an interpretation in (ACA, + ¢ ).
Argue in the last theory. There is a witness for D9 ;
call least such witness n,. Clearly, n, is not occupable (see
2.5 and 2.6). Consider n, - 1: it is pot a witness for Oy ,
thus there exists a satisfactory sequence s on n, - 1 such
that s(@ ) = 0. Now 2.9 applies.

This is how Solovay constructed his example (except that
he did not formulate explicitly 2.9). Observe, furthermore,
that (ACA, + ¢ ) is interpretable in ACA,. Since (A.C‘Ao +
+ 7 ConACAo) is interpretable im ACA  (of. e.g. [16]) it
guffices to find an interpretation in (ACAO + " ConACA° +

+ 7@ ); but the last theory proves ¢ 4 O-1p . Let n, be
the least witness for g and continue as above. Thus @
is of type (1)(from 1.3).

In the sequel, let A denote the modality of interpre-
A
tability and let [0 denote disjunction of provability and
interpretability.
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A

4.2. ¢=(0np30e).
Clearly, "9 ¢ IACAoi we show that @ € Ijcp Again
it suffices to interpret (.A.CAo +@ ) in (ACA, + 7 c°nACA° +

+ 719 ). The last theory proves (Og < 6'199 )s let n, be
the least witmess for 1@ . Then n, is not occupable and
n, is neither a witness for A~ @ nor a witness for D-e.
Thus there is a satisfactory s on nj such that s{g) = 1.
Apply 2.9. Thus @ is of type (2).

4.3. o=(O~gdle).

Clearly, @ & IACAO' To prove (W@ e IACAO argue in

(ACA, + @) &8 in (1). Thus @ is of type 3.

4.4. P =(D @4 Ag ) (Hijek [6]).

Clearly, 9, (W@ )¢ IACAO' Thus ¢ is of type (4).

Now let us consider fixed points with <& ; recall 3.10
telling that if we prove that ¢ is not V then g is TTJ-con-

servative, l.e. @ € Ip,.

4.5. p=(Op=20p)-

Clearly, ¢ is independent. This already shows that ¢
is TT -conservative. We show that (ACA, + 1p ) is inter-
pretable in (ACAO + @ ). Argue in the last theory. Let n,
be the least number such that for some true Ztg-sentenoe u,

u—>-1¢@ is proved on level n . If n, is occupable,

)
Tr(Z,no),\then necessarily z2(u,#) = 1 (see 2.7) and

Z2(7@ ,@) = 0 (see 2.6), thus for the true satisfactory se-
quence we have s(u —>-p ) = 0, a contradiction. This shows
that ng is not occupable and n, is not a witness for Og ; thus

there is an s on n, - 1 such that s{~p ) = 1. Apply 2.9.
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To prove that (ACA, + % ) is interpretable in ACA ,
consider (ACA, + 71 Con,.y, + 779 ); the last theory proves
o

Op 2 0-9¢ (since - Con implies ( @3 T ) Vv
v(Ogp <4 09 ) which implies (O=p=2O¢ ) v
v(ODep 2079 )). Thus proceed analogously. We see that
@ is of type (5).
A
4.6, p=0gp=2Up-
Agein, @ being not 1 , @ is TTg-con. Consequently,
A
¢ is not [ and hence not A, ie. (@I, - To
)
prove p € I,,, consider (ACA, + "1Cony,, + 1@ ) as above.
o °
Thus ¢ is of type (6).
A
4.7. p=(O-p=09).
We prove @ ¢ I,,, . Assume the contrary and let i be
o

the least witness for Agp . Work in (ACAO + 9 ). Arguing as

in the second half of 3.6 we show that 7@ is provable (in
PA), which is a contradiction. Thus indeed ¢ ¢ I,5, - Con-
(]

A
sequently, @ is not 0 and therefore ¥ is ‘ITg-con. To
show that (11p )e IACAO’ argue in (ACA, + @ ). Let n, be the
least number such that u—> @ 1is provable on level n,
where u is true E?_—sentence. As in 4.5, show that n, is not
occupable. Continue as usual; @ 1s of type (7).

4.8. TUnfortunately, the author was unable to show that
the fixpoint ¢ =(A-19 2 Ag ) (or similar fixpoints with
some A replaced by fl ) is of type (8). This is definitely
a fault of beauty; but this gives us an opportunity to pre-
sent an entirely different method due to Lindstrom [81. Our
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proof is a combination of his proofs of Theorem 2 and Theo-
rem 5. (I was suggested by Svejdar to try to use Lindstrem’s
Theorem 2.) l

Ve are going to construct a formula of type (8) as
7 Con_, where o’ is an appropriate PR-binumeration of PA,
Let o be the natural binumeration of PA and for each PA-
sentence ¢ , let ol ] (x) = (o (x)% beneath x, there is
no Q-proof of & ). (Q is the usual finite subsystem of PA.)
Put
f(p) =" Con_rog » Y, =4¢; f(q?)eIACAO}. Y, = {p;

(g de I_._cAo?x .

Claim. If Qw9 then g§ Y,uY,, thus Y;uY, is mo-
no-consistent with Q in Lindstrom’s terminology.

Proof of the claim. If Q+-1¢ then PAt—Cond[_'?J
AcCA - £(p ) and £(p)e IACAO' Purthermore, PAr TQ+ @'
thus PAr-TQ - ¢! (since PA Conq) and hence ACA
Folepl=o0o , thus ACA + Con, 1= Con, , which implies

s, thus

Con [91¢ IACAO'» The claim 1s proved.

By [8] Lemma 1, there is a @ such that neither ¢ nor
1@ is in Th(Q)u Y u Y, (where Th(Q) is the set of all for-
mulas provable in Q). We show that f(1g ) is our formula of
gl * Since Q -~ @,
o [¢] binumerates PA and hence (-~ °°"ocr9])“: Ip, (see [11).
Second, (-1 )¢ ¥,, thus (g )4 IACA(’; third, ¢ ¢ Y,, thus

type (8). First, we have £(q@ ) = Con

(71 )¢ I g, - This concludes the proof.
(5]
4,1 - 4.8 prove the following

4.9. Main theorem II. Bach type (from 1.3) is non~empty.
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4.10. Remark. Afier having read a preprint of this pa-
per, Lindstrom gave simple altermative proofs of existence
of sentences of types (2),(3),(4),(6),(7), assuming existence
of sentences of type (1) and (5); his proofs use results of
[8]. I present my original proofs since I believe that modal
considerations of § 5, which make explicit the modal nature
of proofs of existence of sentences of type (1) and (5), are
of independent interest as a contribution to arithmetic in-
terpretations of modal logic, and having our main theorem
3.8, proofs of existence of sentences of types (1) - (7) are
reasonably simple.
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