Previous |  Up |  Next

Article

References:
[1] J. KŘIVKA: On the dimension of odd cycles and cartesian cubes. in: Proc. Conf. Alg. Methods in Graph Theory, Szeged 1978.
[2] L. LOVÁSZ J. NEŠETŘIL A. PULTR: On a product dimension of graphs. J. Comb. Theory Vol. 29, No. 1 (1980), 47-67. MR 0584160
[3] J. NEŠETŘIL A. PULTR: Product and other representations of graphs and related characteristics. in: Proc. Conf. Alg. Methods in Graph Theory, Szeged 1978.
[4] J. NEŠETŘIL A. PULTR: A Dushnik-Miller type dimension of graphs and its complexity. L. N. in Comp. Sci. 56, Springer 1977. MR 0491363
[5] J. NEŠETŘIL V. RÖDL: A simple proof of the Galvin-Ramsey property of the class of all finite graphs and a dimension of graphs. Discrete Moth. 23 (1978), 49- 55. MR 0523311
[6] S. POLJAK A. PULTR: On the dimension of trees. to appear in: Discrete Math. MR 0611429
[7] S. POLJAK A. PULTR V. RÖDL: On the dimension of the Kneser graphs. in; Proc. Conf. Alg. Methods in Graph Theory, Szeged 1978.
[8] S. POLJAK A. PULTR V. RÖDL: On a product dimension of bipartite graphs. submitted to J. of Graph Theory.
[9] A. PULTR: On productive classes of graphs determined by prohibiting given subgraphs. Colloquia Mathematica Sci. János Bolyai, 18. Combinatorics, Keszthely 1976, 805-820. MR 0519311
[10] A. PULTR J. VINÁREK: Productive classes and subdirect irreducibility. in particular for graphs, Discrete Math. 20 (1977), 159-176. MR 0485593
[11] J. ŠIŠKA: Tolerance spaces and their dimension. (Czech), Thesis (Charles University, Prague 1977).
Partner of
EuDML logo