Previous |  Up |  Next

Article

References:
[1] A. BEN-ISRAEL A. CHARNES: On the intersection of cones and subspaces. Bull. Amer. Math. Soc. 74 (1968), 541-544. MR 0232183
[2] N. BOURBAKI: Espaces vectoriels topologiques. Chap. III-V, Hermann, Paris, 1964.
[3] B. D. CRAVEN J. J. KOLIHA: Generalizations of Farkas' theorem. SIAM J. Math. Anal. 8 (1977), 983-997. MR 0471302
[4] J. DIEUDONNÉ: Sur la séparation des ensembles convexes. Math. Ann. 163 (1966), 1-3. MR 0194865
[5] A. Я. ДУБОВИЦКИЙ, А. А. МИЛЮТИН: 3адачи на екстремум при наличии ограничений. Ж. вычисл. мат. и мат. физики 5 (1965), 395-453. MR 0191691 | Zbl 0255.00003
[6] R. J. DUFFIN: Infinite programs, in Kuhn-Tucker (eds.): "Linear inequalities and related systems". pp. 157-170, Princetovn Univ. Press, Princeton, K.J., 1956. MR 0087573
[7] K. FAN: A generalization of the Alaoglu-Bourbaki theorem and its applications. Math. Z. 88 (1965), 48-60. MR 0178326 | Zbl 0135.34402
[8] K. FAN: Asymptotic cones and duality of linear relations. J. Approximation Theory 2 (1969), 152-159. MR 0248497 | Zbl 0174.17801
[9] J. FARKAS: Über die Theorie der einfachen Ungleichungen. J. Reine Angew. Math, 124 (1902), 1-27.
[10] L. HURWICZ: Programming in linear spaces, in Arrow-Hurwicz-Uzawa (eds.); "Studies in linear and non-linear programming". pp. 38-102, Stanford Univ. Press, Stanford, CA, 1958. MR 0108399
[11] K. S. KRETSCHMER: Programmes in paired spaces. Canad. J. Math. 13 (1961), 221-238. MR 0155684 | Zbl 0097.14705
[12] P. LEVINE J.-Ch. POMEROL: Sur un théoreme de dualité, et ses applications a la programmation linéaire dans les espaces vectoriels topologiques. C.R. Acad. Sci., Paris, Sér. A, 274 (1972), 1722-1724. MR 0305105
[13] P. LEVINE J.-Ch. POMEROL: Infinite programming and duality in topological vector spaces. J. Math. Anal. Appl. 46 (1974), 75-89. MR 0371414
[14] T. NAKAMURA M. YAMASAKI: Sufficient conditions for duality theorems in infinite linear programming problems. Hiroshima Math. J. 9 (1979), 323-334. MR 0535516
[15] M. SCHECHTER: Linear programs in topological vector spaces. J. Math. Anal. Appl. 37 (1972), 492-500. MR 0290789 | Zbl 0235.90037
[16] M. SCHECHTER: A solvability theorem for homogeneous functions. SIAM J. Math. Anal. 7 (1976), 696-701. MR 0417922 | Zbl 0341.90043
Partner of
EuDML logo