[1] ANYANWU D. U.:
Uniform asymptotic solution of nonhomogeneous differential equations with turning points. SIAM J. Math. Anal. 8 (1977), 710-718.
MR 0596985
[2] ANYANWU D. U., KELLER J. B.:
A solution of higher order differential equations with several turning points. Comm. pure appl. Math. 31 (1978), 107-121.
MR 0486874
[3] BAKKEN I.:
On the central connection problem for a class of ordinary differential equations. Funkcial. Ekvac. 20 (1977), 115-156.
MR 0499531
[4] BRAAKSMA B. L. J.:
Recessive solutions of linear differential equations with polynomial coefficients. Lecture Notes Math. 280 (1972), 1-15.
MR 0477226 |
Zbl 0242.34007
[5] EВГРАФОВ M. A., ФЕДОРЮК M. B.: Accимптотикаa peшений $W^\ast - p(x,\lambda)w = 0$ npи $X\rightarrow\infty$ в комплексной плоскости $z$. Успехи матем. наук 21 (1966), 3-50.
[6] GROEN P. P. N.: Singular perturbed differential operators of second order. Amsterdam 1976.
[7] IWANO M., SIBUYA A.:
Reduction of the order of linear ordinary differential equation containing a small parameter. Kodai math. sem. rep. 15 (1963), 1-23.
MR 0149034
[9] LEE R.:
On the uniform simplification of linear differential equations in a full neighborhood of a turning point. J. Math. Anal. Appl. 27 (1969), 601-510.
MR 0245919
[10] LEUNG A.:
Connection formulas for asymptotic solutions of second order turning points in unbounded domains. SIAM J. Math. Anal. 4 (1973), 89-103 (Errata: 6 (1975), 600).
MR 0333382 |
Zbl 0252.34063
[11] LEUNG A.:
Lateral connections for asymptotic solutions around higher order turning points. J. Math. Anal. Appl. 50 (1975), 560-578.
MR 0372356 |
Zbl 0303.34044
[12] LEUNG A.:
Doubly asymptotic series for $n$-th order differential equations. SIAM J. Math. Anal. 5 (1974), 187-201.
MR 0348209 |
Zbl 0289.34081
[13] LEUNG A.:
A dubly asymptotic existence theorem and application to order reduction. Proc. London Math. Soc. 33 (1976), 151-176.
MR 0412543
[14] LEUNG A.:
A third-order linear differential equation on the real line with two turning points. J. diff. equ. 29 (1978), 304-328.
MR 0492643 |
Zbl 0397.34075
[15] LYNN R., KELLER J.:
Uniform asymptotic solutions of second order linear ordinary differential equations with turning points. Comm. Pure Appl. Math, 23 (1970), 379-408.
MR 0261100 |
Zbl 0194.12202
[16] MC HUGH J.:
A historical survey of ordinary linear differential equations with a large parameter and turning points. Arch. History Exact. Sci. 7 (1971), 277-324.
MR 1554147
[17] NAKAKO M., NISHIMOTO T.:
On a secondary turning point problem. Kodai Math. Sem. Rep. 22 (1970), 365-384.
MR 0265696
[18] NISHIMOTO T.:
On matching methods in turning point problems. Kodai Math. Sem. Rep. 17 (1965), 198-221.
MR 0183945 |
Zbl 0142.34404
[19] NISHIMOTO T.: On a matching method for a linear ordinary differential equation containing a small parameter. Kodai Math. Sem. Rep. 17 (1965), 307-328, 18 (1966), 61-86, 19 (1967), 80-94.
[20] NISHIMOTO T.:
On the central connection problem at a turning point. Kodai Math. Sem. Rep. 22 (1970), 30-44.
MR 0265696 |
Zbl 0193.05202
[21] NISHIMOTO T.:
On an extension theorem and its application for turning point problems of large order. Kodai Math. Sem. Rep. 25 (1973), 458-489.
MR 0335986 |
Zbl 0275.34060
[22] NISHIMOTO T.:
Asymptotic behaviour of the WKB approximations near a Stokes curve. Kodai Math. Sem. Rep. 29 (1977), 71-87.
MR 0486877
[23] OLVER F.: Asymptotic and special functions. Academic press, New York 1974.
[24] OLVER F.:
Connection formulas for second order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1977), 127-154.
MR 0427763 |
Zbl 0344.34050
[25] OLVER F.:
Connection formulas for second order differential equations having an arbitrary number of turning points of arbitrary multiplicites. SIAM J. Math. Anal. 8 (1977), 673-700.
MR 0454215
[26] OLVER F.:
Sufficient conditions for Ackerberg-O'Malley resonance. SIAM J. Math. Anal. 9 (1978), 328-355.
MR 0470383 |
Zbl 0375.34034
[27] ROOS H.-G.:
Die asymptotische Lösung einer linearen Differentialgleichung zweiter Qrdnung mit zweisegmentigen charakteristischen Polygon. Beiträge zur Analysis 7 (1975), 55-63.
MR 0470384
[28] ROOS H.-G.:
Die Konstruktion eines asymptotischen Fundamentalsystems für eine lineare Differentialgleichung vom hydrodynamischen Typ. ZAMM 56 (1976), 401-408.
MR 0431925 |
Zbl 0337.34054
[29] ROOS H.-G.: Die asymptotische Lösung einer linearen Differentialgleichung mit dreisegmentigem charaktetistischen Polygon. Mathematische Nachrichten (im Druck).
[30] RUBENFELD L., WILLNER B.:
Uniform asymptotic solution for linear second order ordinary differential equations with turning points. SIAM J. Appl. Math. 32 (1977), 21-38.
MR 0437869
[31] SIBUYA Y.:
Uniform simplification in a full neighborhood of a transition point. Mem. Amer. Math. Soc. no 149 (1974).
MR 0440140 |
Zbl 0297.34051
[32] SIBUYA Y.: Global theory of second order linear ordinary differential equations with a polynomial coefficient. North Holland Math. Studies 18, Amsterdam 1975.
[33] WASOW W.: Asymptotic expansions fee ordinary differential equations. Interscience, New York 1965.
[34] WASOW W.:
The central connection problem at turning points of linear differential equations. Comment. Math. Helv. 46 (1971), 65-86.
MR 0285775 |
Zbl 0218.34010
[35] WASOW W.:
Simple turning-point problems in unbounded domains. SIAM J. Math. Anal. 1 (1970), 153-170.
MR 0259259 |
Zbl 0211.11002
[36] WILLNER B., RUBENFELD L.:
Uniform asymptotic solution for a linear ordinary differential equation with one $\mu $-th order turning point. Comm. Pure Appl. Math. 29 (1976), 343-367.
MR 0425282
[37] WYRWIGH H.:
An explicit solution of the central connection problem for an $n$-th order linear ordinary differential equation with polynomial coefficients. SIAM J. Math. Anal. 8 (1977), 412-422.
MR 0440141