[1] V. BENCI D. FORTUNATO:
Discreteness conditions of the spectrum of Schrödinger operators. J. Math. Anal. and Appl. 64 (1978), 695-700.
MR 0481616
[2] F. E. BROWDER:
On the spectral theory of elliptic differential operators. Mat. Annalen 142 (1961), 22-130.
MR 0209909 |
Zbl 0104.07502
[3] I. M. GLAZMAN:
Direct methods of the qualitative spectral analysis of singular differential operators. Israel Program of Translations, Jerusalem (1965).
MR 0190800
[5] T. KATO:
Schrödinger operators with singular potentials. Israel J. Math. 13 (1973), 135-148.
MR 0333833 |
Zbl 0246.35025
[6] V. B. LIDSKII:
Conditions for the complete continuity of the resolvent of a nonself-adjoint differential operators. Dokl. Akad. Nauk SSSR 113 (1957), 28-31.
MR 0091385
[7] A. M. MOLCHANOV:
The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov. Mat. Obšč. 2 (1953), 169-300.
MR 0057422
[8] M. A. NAIMARK:
The spectrum of singular non self-adjoint second order differential operators. Dokl. Akad. Nauk SSSR (1952), 41-44.
MR 0051402
[9] B. S. PAVLOV: The non self-adjoint Schrödinger operator. Topics Math. Phys. 1 (1967), 83-113.
[10] M. REED B. SIMON:
Methods of modern Mathematical Physics, I. Academic Press New York (1972).
MR 0751959
[12] T. KATO:
On some Schrödinger operators with a singular complex potential. Ann. Sc. Norm. Sup. Pisa 5 (1978), 105-114.
MR 0492961 |
Zbl 0376.47021