Previous |  Up |  Next

Article

References:
[1] V. BENCI D. FORTUNATO: Discreteness conditions of the spectrum of Schrödinger operators. J. Math. Anal. and Appl. 64 (1978), 695-700. MR 0481616
[2] F. E. BROWDER: On the spectral theory of elliptic differential operators. Mat. Annalen 142 (1961), 22-130. MR 0209909 | Zbl 0104.07502
[3] I. M. GLAZMAN: Direct methods of the qualitative spectral analysis of singular differential operators. Israel Program of Translations, Jerusalem (1965). MR 0190800
[4] T. KATO: Perturbation theory for linear operators. Springer Verlag, New York (1966). MR 0203473 | Zbl 0148.12601
[5] T. KATO: Schrödinger operators with singular potentials. Israel J. Math. 13 (1973), 135-148. MR 0333833 | Zbl 0246.35025
[6] V. B. LIDSKII: Conditions for the complete continuity of the resolvent of a nonself-adjoint differential operators. Dokl. Akad. Nauk SSSR 113 (1957), 28-31. MR 0091385
[7] A. M. MOLCHANOV: The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov. Mat. Obšč. 2 (1953), 169-300. MR 0057422
[8] M. A. NAIMARK: The spectrum of singular non self-adjoint second order differential operators. Dokl. Akad. Nauk SSSR (1952), 41-44. MR 0051402
[9] B. S. PAVLOV: The non self-adjoint Schrödinger operator. Topics Math. Phys. 1 (1967), 83-113.
[10] M. REED B. SIMON: Methods of modern Mathematical Physics, I. Academic Press New York (1972). MR 0751959
[11] M. SCHECHTER: Principles of functional analysis. Academic Press, New York (1971). MR 0445263 | Zbl 0211.14501
[12] T. KATO: On some Schrödinger operators with a singular complex potential. Ann. Sc. Norm. Sup. Pisa 5 (1978), 105-114. MR 0492961 | Zbl 0376.47021
Partner of
EuDML logo