Previous |  Up |  Next

Article

References:
[AHS] ADÁMEK J. H. HERRLICH G. E. STRECKER: The structure of initial completions. Preprint. MR 0558103
[AK1] ADÁMEK J. V. KOUBEK: What to embed into a cartesian closed topological category. Comment. Math. Univ. Carolinae 18 (1977), 817-821. MR 0460413
[AK2] ADÁMEK J. V. KOUBEK: Cartesian closed fibre-completions. Preprint.
[An1] ANTOINE P.: Étude élementaire d'ensembles structures. Bull. Soc. Math. Belgique 18 (1966), 144-166 and 337-414.
[An2] ANTOINE P.: Catégories fermées et quasi-topologies III. Preprint.
[BT] BORGER R. W. THOLEN: Is any semi-topological functor topologically algebraic?. Preprint.
[D] DAY B.: A reflection theorem for closed categories. J. Pure Appl. Algebra 2 (1972), 1-11. MR 0296126 | Zbl 0236.18004
[FS] FRIED E. J. SICHLER: Homomorphisms of integral domains. Trans. Amer. Math. Soc. 225 (1972), 163-182. MR 0422382
[GS] GRATZER G. J. SICHLER: On the endomorphism semigroup (and category) of bounded lattices. Proc. Amer. Math. Soc. 34 (1972), 67-70.
[He1] HERRLICH H.: Initial completions. Math. Z. 150 (1976), 101-110. MR 0437614 | Zbl 0319.18001
[He2] HERRLICH H.: Cartesian closed topological categories. Math. Colloq. Univ. Cape Town IX (1974), 1-16. MR 0460414 | Zbl 0318.18011
[Ho] HOFFMANN R.-E.: Note on universal topological completion. Preprint. MR 0548489 | Zbl 0429.18002
[HL] HEDRLÍN Z. J. Lambek: How comprehensive is the category of semigroups?. J. Algebra 11 (1969), 195-212. MR 0237611
[HNST] HERRLICH H. R. NAKAGAWA G. E. STRECKER T. TITCOMB: Semitopological and topologically-algebraic functors (are and are not equivalent). Preprint.
[HP1] HEDRLÍN Z. A. PULTR: On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406. MR 0191858
[HP2] HEDRLÍN Z. A. PULTR: Symmetric relations (undirected graphs) with given semigroups. Monatsh. Math. 69 (1965), 318-322. MR 0188082
[HS1] HERRLICH H. G. E. STRECKER: Category Theory. Allyn and Bacon, Boston, 1973. MR 0349791
[HS2] HERRLICH H. G. E. STRECKER: Semi-universal maps and universal initial completions. Preprint. MR 0569338
[Hu] HUŠEK M.: $S$-categories. Comment. Math. Univ. Carolinae 5 (1964), 37-46. MR 0174027
[Ko] KOUBEK V.: Each concrete category has a representation by $T_2$ paracompact topological spaces. Comment. Math. Univ. Carolinae 15 (1974), 655-663. MR 0354806 | Zbl 0291.54019
[Ku] KUČERA L.: Úplná vnoření struktur. Dissertation, Charles University, Praha 1973.
[KP] KUČERA L., A. PULTR: On a mechanism of defining morphisms in concrete categories. Cahiers Topol. Geom. Diff. 13 (1972), 397-410. MR 0393173
[Ma] MANES E. G.: Algebraic Theories. Springer Verlag 1975. MR 0419557
[P] PORST H. E.: Characterization of Mac Neille completions and topological functors. Preprint.
[PS] PULTR A. J. SICHLER: Primitive classes of algebras with two unary idempotent operations, containing all algebraic categories as full subcategories. Comment. Math. Univ. Carolinae 10 (1969), 425-440. MR 0253969
[S] SICHLER J.: Non-constant endomorphisms of lattices. Proc. Amer. Math. Soc. 34 (1972), 67-70. MR 0291032
[T1] TRNKOVÁ V.: All small categories are representable by continuous non-constant mappings of bicompacta. Dokl. Akad. Nauk SSSR 230 (1976), 1403-1405. MR 0417259
[T2] TRNKOVÁ V.: Non-constant continuous mappings of metric or compact Hausdorff spaces. Comment. Math. Univ. Carolinae 13 (1972), 283-295. MR 0303486
Partner of
EuDML logo