Previous |  Up |  Next

Article

References:
[1] S. ABIAN A. B. BROW: On the solution of the differential equation $f(x,y,y') = 0$. Amer. Math. Monthly 66 (1959), 192-199. MR 0104003
[2] A. BIELECKI: Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), 261-264. MR 0082073
[3] L. COLLATZ: Funktionalanalys is und Numerische Mathematik. Berlin - Gdttingen - Heidelberg 1964.
[4] R. CONTI: Sulla resoluzione dell' equazione $F(t,x,x') = 0$. Ann. Mat. Pura Appl. 48 (1959), 97-107. MR 0110838
[5] F. R. GANTMACHER: The theory of matrices. [in Russian], Moscow 1966.
[6] K. GOEBEL: A coincidence theorem. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 733-735. MR 0283648 | Zbl 0165.49801
[7] M. A. KRASNOSELSKIĬ G. M. VAĬNIKKO P. P. ZABREĬKO J. A. B. RUTICKIĬ V. JA. STECENKO: Approximate solution of operator equations. [in Russian], Moscow 1969. MR 0259635
[8J C. KURATOWSKI: Topologie. VI. Warszawa 1958.
[9J G. PULVIRENTI: Equazioni differenziali in forma implicite in uno spazi di Banach. Ann. Mat. Pura Appl. 56 (1961), 177-191. MR 0133553
[10] B. RZEPECKI: On the Banach principle and its application to the theory of differential equation. Comment. Math. 19 (1977), 355-363. MR 0478124
[11] B. RZEPECKI: A generalization of Banach's contraction theorem. to appear in Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26. Zbl 0421.47032
Partner of
EuDML logo