Previous |  Up |  Next

Article

References:
[1] B. AUPETIT: Caractérisation spectrale des algèbres de Banach commutatives. Pacific J. Math. 63 (1976), 23-35. MR 0415320 | Zbl 0309.46045
[2] B. AUPETIT: Propriétés spectrales des algèbres de Banach. (to appear). MR 0549769 | Zbl 0409.46054
[3] J. DUNCAN A. W. TULLO: Finite dimensionality, nilpotents and quasinilpotents in Banach algebras. Proc. Edinburgh Math. Soc. 19 (1974), 45-49. MR 0344892
[4] A. O. NEMIROVSKIJ: O svjazi nekommutativnosti s naličiem obobščennych nilpotentov dlja nekotoryeh klassov banachovych algebr. Vestnik MGU, ser. mat.- mech. 6 (1971).
[5] V. PTÁK J. ZEMÁNEK: On uniform continuity of the spectral radius in Banach algebras. Manuscripta Math. 20 (1977), 177-189. MR 0442684
[6] C. E. RICKART: General theory of Banach algebras. Van Nostrand I960. MR 0115101 | Zbl 0095.09702
[7] Z. SŁODKOWSKI W. WOJTYŇSKI J. ZEMÁNEK: A note on quasinilpotent elements of a Banach algebra. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 25 (1977), 131-134. MR 0438124
[8] E. VESENTINI: On the subharmonicity of the spectral radius. Boll. Un. Mat. Ital. 1 (1968), 427-429. MR 0244766
[9] J. ZEMÁNEK: A survey of recent results on the spectral radius in Banach algebras. Proc. of the fourth Prague Symp. in General Topology and its Relations to Modern Analysis and Algebra, 1976. MR 0487455
[10] J. ZEMÁNEK: Spectral radius characterizations of commutativity in Banach algebras. Studia Math. 61 (1977). MR 0461139
Partner of
EuDML logo