[1] R. FRUCHT:
Herstellung von Graphen mit vorgegebener abstrakten Gruppe. Compositio Math. 6 (1938), 239-250.
MR 1557026
[2] Z. HEDRLÍN J. LAMBEK:
How comprehensive is the category of semigroups?. J. of Algebra 11 (1969), 195-212.
MR 0237611
[3] Z. HEDRLÍN E. MENDELSOHN:
The category of graphs with a given subgraph - with applications to topology and algebra. Canad. J. Math. 21 (1969), 1506-1517.
MR 0260608
[4] Z. HEDRLÍN A. PULTR:
Relations (graphs) with given finitely generated semigroups. Mhf. für Math. 68 (1964), 213-217.
MR 0168684
[5] Z. HEDRLÍN A. PULTR:
Symmetric relations (undirected graphs) with given semigroup. Mhf. für Math. 68 (1964), 318-322.
MR 0188082
[6] Z. HEDRLÍN A. PULTR:
On full embeddings of categories of algebras. Illinois J. Math. 10 (1966), 392-406.
MR 0191858
[7] Z. HEDRLÍN:
Extensions of structures and full embeddings of categories. in: Proc. Intern. Congr. of Mathematicians, Nice, September 1970 (Gauthier-Villars, Paris, 1971).
MR 0419554
[9] P. HELL J. NEŠETŘIL:
Graphs and $k$-societies. Canad. Math. Bull. 13 (1970), 375-381.
MR 0276124
[10] E. MENDELSOHN:
On a technique for representing semigroups and endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283-294.
MR 0304533
[11] A. PULTR:
On full embeddings of concrete categories with respect to forgetful functor. Comment. Math. Univ. Carolinae 9 (1968), 281-305.
MR 0240166
[12] A. PULTR:
Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Annalen 178 (1968), 78-82.
MR 0230794 |
Zbl 0174.30002