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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

GRAPHS WITH GIVEN SUBGRAPHS REPRESENT ALT- CATEGORIES
Véclav KOUBEK, Praha

A : Let G be an arbitrary finite graph without
loops. Denote by GRAG a full subcategory of the category of '

all graphs and compatible mappings generated b{ all graphs
such that for each edge there exists their full subgraph iso~
morphic to G containing this edge. We prove that there exists
a strong embedding the category of all graphs into GRAg, in

perticular, GRA; is binding.

Key words: Full subcategory, binding category, graphs
with given subgraphs.

AMS: 18Bl15 Ref. Z.: 3.963.5

It is well-known that for every monoid M there exists a
graph (X,R) such that the endomorphism monoid of (X,R) is iso-
morphic to M, and, if M is finite then X can be finite, too.

Z. Hedrlin and L. Kufera obtained a stronger result: every con-
crete category can be fully embedded into the category GRA of
all graphs. This has lead to the next important question:

Into which categories the category GRA can be fully embedded?
When solving this problem we often see that it is much easier
to embed into a given category not directly GRA but rather an~
other category, into which GRA can be embedded. To this end,

we use some full subcategories of GRA, e.g. the category of all

undirected graphs, of all connected graphs etc. Therefore we
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have to know which full subcategories of the category GRA are
binding (i.e. the category GRA can be fully embedded into them).
For instance, this question was solved in the following papers
[2,4,5,6,8,9,10,11].

The aim of this note is to prove that for eve;y finite
graph (X,R) without loops such that R#%@ there exists a strong
embedding of the category GRA to its full subcategory which con-
tains those graphs, each edge of which lies in a full subgraph,
isomorphic to (X,R).

Definition [12], Let (X,U),(L,V) be concrete categories.
A full embedding Q : K—» L is called a strong embedding if
there exists a set functor F: Set—Set such that the following

diagram commutes

K ——> L

Ul lv

Set —————» Set

We use a modification of a general construction of E. Men-
delsohn [10]. We shall define a &{p-product (or 3{p-sou¥in)
(X,R,R",4,B) % (Y,S) of a 3fp (X,R,R",A,B) and an arbitrary graph
(Y,S) where X is a set, R'’c Rc X=X, i.e. R, R’ are relations
on X, A, B are disjoint subsets of X such that there exists =
bijection 1: A—>B, 1x 1(RA(AxA)) = RA(BxB) and 1x1(R'A
A (A»A)) = R°n (BxB). Now, (X,R,R",A,B)% (Y,S) is a quotiént
graph of (XxY¥xY,T =-1(xl,yl,yz),(xz,yl,yz)); (xl,xz)e R,
(yl.yz)E sjudi ((xl,yl,yz), (xz,yl,yz)); (xl,xz)eR', (yl,yz)e
e ((Y=Y) - $)% ) under the equivalence ~ which is defined as
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follows: (xl'yl’ul)N(xz'yZ’“z) whenever

elther xy = x,€ 4 and yy = ¥,

or i(x;) = Xy and ¥1 = W,

or x; = x,€ B and uy =,

Intuitively, the 3{p-product is obtained by replacing
every arrow of the graph (Y,S) with the starting point a and
the endpoint b of a copy of the graph (X,R), where the set A
replaces the point a and B replaces b and every arrow of .
(Yx<Y) =S with the starting point a and the endpoint b by a
copy of the graph (X,R’) where A replaces a and B replaces b.

Let £: (Y¥,5)—~(Y",S") be a compatible mapping, then a
mapping £*: (X,R,R’,A,B) % (Y,$)—>(X,R,R",a,B)% (Y ,S”) de-
fined by £* (x,y;,¥,) = (x,f(yl),f(yz)) is compatible and the-
refore & (Y,8) = (X,R,R",A,B) % (¥,S), $ £ = £* is a functor.
Notice that £¥= ((C,xI)v (Q,x= Cy_(4,p)))f where C, or Cy_(4p)
are constant set functors to A or X - (AUB), I is the identi-
ty set functor and Q2 is the set hom-functor to two-point set.
Hence, if ® 1is a full embedding then it is a strong embed-
ding.

Definition. A 31{p (X,R,R’,A,B) is called strongly rigid
if for every graph (Y,S) and every compatible mapping
£: (X,R)— (X,R,R",4,B)% (Y,S) (or £: (X,R")—>(X,R,R",A,B) %
* (Y,S)) there exists (yl,yz)es (or (yl,yz)e Y=Y) with £(x) =
=[(x,y1,¥,)] for every xeX ((x,y;,¥,)] 4is the class of ~
containing (x,y,,¥5)).

Proposition 1. If (X,R,R’,A,B) is strongly rigid then
® 1s a strong embedding.
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Proof. It suffices to prove that ¢ is full. The proof
is an easy modification of the proof in [10]l. Let (Y,s),(Y’,s")
be graphs snd let f: (X,R,R’,A,B) % (Y,§)— (X,R,R*,4,B) %
*(Y",S°) be a compatible mapping. Since (X,R,R’,A,B) is
strongly rigid we get that for every couple (yl,yz)e Y=Y the-
re exists (u),u;)e€ Y= ¥ with £( L(x,51,¥,)3) = [ (x,uy,u,)]
for every x€ X and, moreover, if (y,,¥,)€ § then (u),u,)e s’.
Therefore, we can define h: YxY—> Y'» ¥’ by h(yys¥,) =

= (ul,uz). Further if ylgyzgy3€ Y, then f( [ (x,yl,yz)l ) =
=£([ (x,yl,y3)J ) for every x€ A and so if h(y;,¥,) =

= (u3,4,), h(yl,ya) = (u3,u4) then u) = uj. Analogously, we
prove that if h(yl,yz) = (ul,u2> and h(yl,yz) = (u3,u4) then
u, =u,. Therefore there exist g;,g,: Y—> Y’ , withh = g =
= g5o Further E{4" (xl,yl,yz)l ) = £(C (xz,y3,y1)J ) whenever
x,€ A and i(xy) = X5, hence g(y) = gy(y;} eand thus g, = 8o
Therefore h = gx g (where g, =g = 32) and because h(S)c §°
we get that g is compatible. Clearly g* = £,

We shall comstruct a 3ip with special properties and
therefore we shall need special rigid graphs (i.e. graphs

which have no non-identical endomorphism).

Definition. Let (X,R) be a graph, x,ye X. A sequence
m
-{Ki'& y=1+ Ky€ X such that cerd Ky = n, card (kg n K1+1) =
=n -1, (K,Rn(Ryx K,)) is a complete graph without loops
for every i = 1,2,...,m 1 an n-path connecting x with y in
(X,R) if xeK,, yeK,.

Note. If f: (X,R)—p (Y,S) is a compatible mapping and

(Y,S) has not loops t-\.. » 1aps every n-path into an n-path.

L
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Lemmg 2. For every triple (m,n,p) of natural mumbers
such that m is a non-trivial multiple of n, n>p + 2 there
exists a graph I:',p = (Mm'Qn,p) where M, ={0,1,2,...,m} such
that

1) for every distinct points x,ye M there exists an
n-path connecting x with y;

2) for every edge (x,yle Q,p there exists Zc M sueh
that x,ye Z, card 2z p and (Z,Qn.pﬁ(Zx Z}) 1s a complete
graph without loops (i.e. I:"p has not loops and it is symmet-
ric);

3) there exists an edge (x,y)e Qn,p with the following
property: for every Zc M, such that x,y€ Z and (Z'Qn,p N
A (Z>2)) is a complete graph without loops, card Zé p;

4) the chromatic number of (Z.Qn'pn(’Zx Z)) is n + 1 ift

Z = Mp;
5) I:’p is rigid; )
6) if £: I® — 18 , is compatible then mz m’ and
n,p n,p

p&p’, moreover, if m = m’ then £ is compatible iff p&p’ and
f is the identity mapping;

7) for every xe M, card iy; (x,y)e Qn’p} £ 2n,
Proof see [9].

Definition. For a triple (m,n,p) of natural numbers such
that m is a non-trivial multiple of n, n>p + 2 define

Pop = £(x,y); x<y,(x,y)e U, p 3

Clearly, Q =4 (x,y); (x,y)e Pn, or (y,x)e Pn, $.

n,p P P

=119 -



Construction 3. Let Gy = (XO,RO) be a connected graph
without loops such that ¥ > card X0>1. Then for arbitrary
natural numbers NosPg such that Po> card Xo, ny> Py +
+ (4 . card xo) - 6 we construct a 31{p :f(Go,no,po) =
= (2,7,7",A,B). First assume that card Xg> 2. Choose (xo,yo)s
€ Ry. Choose a bijection < :40,1,...,card X5 - 33 —> X, -
= 4x0,¥o} and identify 1 with ¢ (1), then X; =40,1,...,
card X5 - 3, xo,yo} .

For 1 = 0,1,..., (2. card Xg) = 5 denote by my =
=y, (2.card xo)_4 = ng - (p0 +1) . (po + i+ (2« card Xo) -
- 4). Put

(2 + card Xo) -5
zZ = [ Mm"'ii;
i=0 i

We shall define Ty,T,,T3,T,,T5,TgC ZxZ.

For every J = O,l,...,2no, choose xéeMi where 1 = 0,1,...,
(4 < card X5) - 9. Further, for every i = 0,1,...,(4. card Xy)-
- 9, by Condition 7 in Lemma 2 there exists a decomposition

-(13; J=0,1,...,209% of P 4 such that 1f (x,y),(z,v)e

OgsPot*
ewj then x=v, y=2z and, moreover, x-i-x;*y (of course
z*xé*v, to0).

Now, if (ky,k,) & Ry then

2k, 2k, 2k, +1 2k,+1
(g 1,2k, ey 2,200, ey b2k + 1), (xg 2,2k, + 1)e

N

€ Tlr\ T2 for every J = 0,1,...,21:0;

if (kl,xo),(xo,kz),(k3,yo),(y0,k4)e Ry then
2k 2k
((xy 1,2k1),(u,1)),((u,i),(xJ 2,2k,))eT) if 1 1s 0dd and there
exists v with (u,v)eW§ )
2kl+1

2k2+1
((xJ y2ky + l),(u,i)),((u,i),(xd 2k, + 1))e Ty if i is

- 120 -



even and there exists v with (u,v)awi,
21{4

2k3
((xy 2,2k3), (v, 00), (v, 1), (x

,2kg))€T) 1f 1 1s odd and there

exists u with (u,v) ewg,
2k3+1 2k‘+l
((xj 12ky + 1),(v,i)),((v,i),(xd 2k 1))c.-'1‘1 if i is

even and there exists u with (u,v)évﬁ,

2k1 2k2
((XJ ,2kl),(u,i)),((u,i),(xj ,2k2))e T, if i is odd and the-

re exists v with (u,v)ewﬁ'z"z'card % | )

2k, +1 2k,+1
((xJ 12ky + 1),(u,i));,((u,1),(xd 2ky + 1)eT, if 1 1s

even and there exists v with (u,v)€ w§-2+2-card %,

2k3 2k4
((xJ ,2k3),(v,i)),((v,1),(xj ,2k4))€'1'2 if 1 is odd and there
exists u with (u,v)£w§-2+2-card ) ,

2yt 2k et
((x‘1 y2ky + l),(v,i)),((v,i),(xj 12k, *+ 1))e T, if 1 is even
j=-2+42¢ card Xo
J ?
if (u,v)e P"o’Po*i nd 14 (2. card X) - 5 then
((n,1),(v,1)e T4

and there exists u with (u,v)e W

((u,1),(v,1)),((v,1),(u,1)) e T,

if (u,v)e Pno’po"'i and 1> (2. card Xg) - 5 then

((u,i + 2 = (2 card Xy)), (v, + 2 = (2. card Xo)))e Ts

((u,1 + 2 = (2+ card Xg)),(v,1 + 2 = (2+ card X,))) % e 1

((vyi + 2 = (2« card X,)),(u,1 + 2 = (2. card X3)))

Put T = T,UuTs T° = Tyu T, 4f (y5,xo)€Ry, T =TuTe, T =
=TT, if (yo’xo)e Rye Further choose distinct points a,be

m,
€% and put A =4a} , B =$b}. Since id: I_*

—
PpsPo*d

m,
-"In;.,po-ti-Z*(Z-card XO) is compatible, we get that T.c T.
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If card X, = 2 then ¥ (Ggsny,p,) is constructed for py> 2,

.,

> + d = =
no>Py + 3 and we put 2 3““090’ T = Popgrl? T = Prpg
if G, is not symmetric, T = QDO’po"l' T = Q“O'po if Gy 1s

symmetric. Choose distinct Points a,b€Z and put A ={a, B =
= {b} .« Clearly Tc T.

Lemmg 4. Let Gy = (Xo,Ro) be a connected graph without
loops such that & >card X5>1. Then for every edge (x,y'e T
or (x,y)eT’ of F(GyiNysPy) there exists a full subgraph of
¢ (Gysny,Py) isomorphic to Gy and containing (x,y).

Proof. Put ¢ (Gy,ny,py) = (2,T,7°,A,B) where T° =T u Ty
(or TjUTg) and T = T,UT, (or T,U Tg). If (x,y)e Ty T,v Ty v
U Tg then there exists i such that x = (u,i), y = (v,1) and

1) (u,v)eP Po*d if (x,y)e T3

D)
2) (u,v)e QnO’pO"i if (x,y)e Tes
3) (u,v)eP

norpo*i-Z-'(Z-card x°) it (x,yle Ty
4) (u,v)e U sBg+i-24(2. card X) f (x,y) e T,

Then there exists j € 10,1,...,2n5§ such that

a) (u,v)elﬁ or (v,u)e vj it (x,y)e T3uT,,

) (u’v)e'i-?-cz-card x")or (v,u) e wg-z«(z- card Xo) if
(x,y)e Ty Tge

Put z° =4(x’J‘,k); k+ 1 4s 0dd3ud x,y#. Then (2°,Tn (2x2Z"))
or (2°,7°n (2°% 2°)) 1s isomorphic to Gye

It (x,y)e Tyv T, then there exist 1€ 40,1,...,card X5 = 33,

J €40,1,...,200% with (x31,21) € £x,53 or (x‘2,’1+1,21 +1)e
€ {x,y}; assume that x = xgi (the proof for the other case

is snalogous), If y = (xgk,Zk) for some k €40,1,..,card Xg= 3§
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then choose 1 € 40,13 such that 1 + 1” is odd and (u,i’),
(v,17) with (u,9)e W), ((2,17),(v,1))e T 12 (x,y)6 T,,
((u,17,(v,4")) e T’ 1f (x,y) €Ty, Put 2° =-i(x§; K); k+1

is even3udi(u,1),(v,1")¢8 . It is clear that a full subgraph
onz’ is isomorphic to Go.

Ity = (u,i”) then 1 + 1 is o0dd. Choose (v,1i’) such that
(u,9)€ Wy and ((u,17),(v,1"0) €T 1f (x,y)eT,, ((u,17),
(v,1"))e?’ if (x,y) € Ty. Put 2° ={(x§,k); k +11s evenio '
v{(u,1”),(v,1°)} and, again, the full subgraph on 2~ is iso-
morphic to Go.

Proposition 5. For every connected graph Gy = (XO,ROJ
without loops where . >card Xy>1, the $1p  F(Gy,ny,py)

is strongly rigid.

Proof. Let ¢(Gy,ny,py) = (z,7,7°,A,B) and let (Y,S) be
an arbitrary graph. Assume that f: (Z,T)-—»&‘(Go,no,po) * (Y,S)
is a compatible mapping. Put T* = {(x,y); (x,y)e T or (y,x) €
€ T§. Denote by < (Gy,ng,Ry)* (¥,8) = (Y*,S") and put S* =
= {(x,y); (x,y)e S’ or (y,x)eS“}. Then £: (2,T%*)—>(Y* k)
is a compatible mapping. Since (Y*,S*) has not loops, we see
that f preserves no-paths. Hence, by Lemma 2 for every i =
= 0,1,...,2+ card Xy = 5 there exist y;,2;€ Y with £(x,1) =
= [(x,1,y4424)] for every xemmi. Further the restriction T*

m
1
to Emix 113% is isomorphic to Ino,po'l'i-«»(zccard xo) and thus
(y4123)€ S. We are to prove that if f(x,io) =[ ("'10”10’z10)3

and f(x'il) = [ (x,ilgyilgzil)J where 10,11 = 0,1,...

esey(2+ card X5) - 5 then yio = yil and zio zil. It follows
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from the fact that there exist distinct points X1 9%p9X3,%X,
with ((xy,10),(xp,1))), ((x5,40), (xgp1;)€ T* and if

(Gysgns v2s ) Copadyady 2s 005 (xgadoudy o2 ), (xgotys
Y1,%1,))€ $* where (yio,zio)*(yil,zil) then either x; = X3

or X, = X, = a contradiction. Hence there exists (yl,yz)c S
with £(z) =[(z,y,,5,)] for every ze 2. If £: (2,7") —>
—_— ‘;?(Go,no,po)* (Y,S) then the proof is analogous.

Definition. Let G = (X,R) be a graph. Denote by GRA; the
full subcategory of GRA consisting of those graphs (Y,S) which
fulfil: for every edge (x,y)e S there exists Zc Y with x,ye Z
such that (Z,SN(Z=2)) is isomorphic to G.

Mailp Theorem 6. Let G = (X,R) be a finite non-trivial
graph without loops. Then there exists a strong embedding from
GRA into GRAG.

Proof. Let Gy = (¥3,Ry), Gy = (X,,Ry).ueGy = (X ,R ) de-
note all components of G with Ry# #. Choose a sequence PpsPosesee
eee,Dp with card X< Pi< Py< eee< Dy and a sequence of DysNyyeee
eesyny with ny« py (2¢ card X; - 4 + pi)> card Z;_, where

9 (Gysngspy) = (24,Ty, T{,Ai,Bi) for every i =1,2,...,m and
n)>p, = 6 + 4. card X, Define 1 : GRA—> GRA; as follows:

m
¥(Y,8) = F(Gy,yny,py)lx (V,8)v (N, (24,T4))
where \ denotes the disjoint union and for 1 = 1,2,,..,n
(6yyny,p4) = (Z4,Ty,T4,A4,B;). For i = 1,2,...,m define:

¥ £ on (Z4,T4) is the identity mepping;
further, ¥ f on ¢ (Gy,n;,p)* (Y,S) is ® £ where & 1is the
embedding induced by &S’(Gl,nl,pl). Since p;> card X we get

- 124 -



that y (Y,S)e GRA;, hence Y : GRA—>GRAj.

Further, clearly, 3 1is an embedding and if U is a forget-
ful functor from GRA {0 Set then there exists a set functor
F: Set—» Set with Fo U =U o 3 (because ® 1is a strong
embedding by Propositions 1 and 5). Since either (Zl’Tl) or
(Zl,Ti) is isomorphic to some full subgraph of ‘e(Gl,nl,pl)*
*(Y,S), it suffices to prove that if f: (Zi,Si)——ﬂ>(ZJ,SJ)
is compatible then 1 = j and £ is the identity mapping where
S§§ =T; or =Ty and Sy =Ty or T‘;, i, =1,2,...,m. Denote
Si* = 4(x,y); (x,ye Sy or (y,x)eS;3 eand 33‘ = {(x,y);
(x,y)e Sj or (y,x)e SJZ .

Since (ZJ,S; ) has no loop we get if x,y€ Z are connecting
with 5-path in (Zi,Sf ) then £(x)}£(y) are connecting with
5-path in (ZJ,SJ‘),too. Therefore by the choice of n; snd p,
and by Condition 6 in Lemma 2 we obtain that i = j.

Since ¢ (Gy,ny,py) ¥ (i1x,y},4(x,y)% ) = (Zi'Ti) and (G,
ng,py) % (4x,y%,0) = (Zi,Ti ) we get by Proposition 5 that

f is the identity mapping. The proof is concluded.

C ar, « For a finite graph G the category GRAG is
binding iff G has not loops and has at least one edge.

Corollgry 8. 1In the finite set theory GRAG is binding
iff G has not loops and has at least one edge.
Proof follows Lrom the fact that < (G,n,p) is finite for

every graph G and every couple (n,p) of natural numbers.

C 1la « [For every finite graph G without loops with
at least one edge and for every (finite) monoid M there exist

infinitely many (finite) graphs (Y,3) such that:
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1) for every edge (x,y)€ S there exists Zc Y such that
x,ye 2 and (Z,Sn (Zx=2Z)) is isomorphic to G;

2} the endomorphism monoid of (Y,S) is isomorphic to
M;

3) there exists no compatible mapping between them.

Moreover, there exist strong embeddings yy4: GRA —»
—» GRAGy1 =1,2,... such that for every couple of graphs
(v,s), (Y¥',S°) and for every 1sJ there exists no compatible
mapping £: ¥,(Y,S) —> ¥4(¥",s").

Proof. This assertion is obtained by a suitable choice
of n, p, by Lemma 2 (Condition 6).
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