[1] B. Fraeijs de VEUBEKE: Displacement and equilibrium models in the finite element method. Stress Analysis, ed. by O. C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197.
[2] B. Fraeijs de VEUBEKE O. C. ZIENKIEWICZ: Strain energy bounds in finite-element analysis by slab analogies. J. Strain Analysis 2 (1967), 265-271.
[3] V. B., Jr. WATWOOD B. J. HARTZ: An equilibrium stress field model for finite element solution of twodimensional elastostatic problems. Int. J. Solids Structures 4 (1968), 857-873.
[4] B. Fraeijs de VEUBEKE M. HOGGE: Dual analysis for heat conduction problems by finite elements. Int. J. Numer. Meth. Eng. (1972), 65-82.
[5] J. P. AUBIN H. G. BURCHARD:
Some aspects of the method of the hypercicle applied to elliptic variational problems. Numer. Sol. Part. Dif. Eqs. II, Synspade (1970), 1- 67.
MR 0285136
[6] J. VACEK:
Dual variational principles for an elliptic partial differential equation. Apl. mat. 18 (1976), 5-27.
MR 0412594 |
Zbl 0345.35035
[7] G. GRENACHER: A posteriori error estimates for elliptic partial differential equations. Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972.
[8] J. M. THOMAS: Méthods des éléments finis équilibre pour les problèmes elliptiques du $2$-ème ordre. To appear.
[9] J. HASLINGER I. HLAVÁČEK:
Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43-65.
MR 0398126
[10] J. HASLINGER I. HLAVÁČEK:
Convergence of a dual finite element method in $R_n$. Comment. Math. Univ. Carolinae 16 (1975), 369-486.
MR 0386303
[11] P. G. CIARLET P. A. RAVIART:
General Lagrange and Hermite interpolation in $R^n$ with applications to finite element method. Arch. Rat. Mech. Anal. 46 (1972), 177-199.
MR 0336957
[12] J. H. BRAMBLE M. ZLÁMAL:
Triangular elements in the finite element method. Math. Comp. 24 (1970), 809-820.
MR 0282540