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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

A NOTE ON A DUAL FINITE ELEMENT METHOD
J. HASLINGER, Praha

Abstract: In (91,[10] the construction of suitable
subspaces of linear trial vector-functions, admissible for
the dual variational formulation was given as well as the
proof of the rate of approximation in C-norm. In the pre-~
sent paper we prove the rate of approximation in

L -norm. This fact permite us to obtain the same results
as in [9),(10] under the weaker assumptions on the regula-
rity of the solution.
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ANMS: 65N3Q Ref. Z.: 8.33

A number of articles has been written on the dual fi-
nite element method (see [1] = [10] etc.). In [9],[10]1 the
authors presented some results, using the simpliest finite
element "equilibrium model”, applying the piecewise linear
polynomials to the solution of a mixed boundary value pro-
blem for one second order elliptic equation without the ab-
soclute term. The rate of convergence O(ha)‘na proved, pro-
vided the exact solution is sufficiently smooth. Let us in~
troduce some notations. Let £ be a bounded domain in R,.
By B )(kZz0 integer) we denote the set of real func-
tions, which are square-integrable in fl together with
their generalized derivatives up to the order k.

we write EO(N) = 12(0 ), ¥ ¥(0) = B0 )= E¥(0)
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with the norm

y1/2,

IFhg o= Clvg1Z o+ vyl 2
@ = (vy,v,)),
where

« 2 1/2
“'i“k,-ﬂ-s(j{mfzéklp Yil dx) .

By
2 1/2
(vljo=C[ 2, 10%vI®ax)

we denote the j-th seminorm in H‘i(.().).

CX(J) denote the space of continuous functions, the deri~
vatives of which up to the order k are continuous and con-
tinuously extensible onto £ (C°(fL) = C(f1)). We write
() = cX(3)x CX(T) with the norm

“7“,,1:@ = mex vl kg) ena

= max (D“’Vi(X)l

"'1 uckcﬁ) ltl & Ao

X €

At first, we recall main results from [3]. Let K be Y

nom-degenerate triangle with vertices ay,85,85 and set a
= &. Far Ve i‘l(K) we define the outward flux

= i = (1) . = (i)
7V = ?|a1‘1+1 L FE < ViR 4 Wonp ’,

where (1) = (nii),néi))e R, is the outward unit normal to

9K on aj8;,,, Vj are the traces of v; on a;a; ... By
P (M) (x>0 integer) we denote the set of all polynonmials
of the order at most k, defined on the set Mc 32' Let
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2 {i)’ Zéi) be the basic linear functioms of the side
8;835419 iee.

A {Per(asay,), k= 1,2
_ z’ii)(ai) =1, h{i)(ai_,,l) = 0;
- AP =0, A{Pag) =1

and let us denote f uv d8 = [u,v], , u,vel-z(aiaiﬂ).
%%
In [9] we proved

Theorem 1. Let We 1?1(1(). Then the equations
(3 2@ a8 = g B, ali,
«py L2, a0 k=12
s - - (i) 5e = (i)
¢33y N u(ai).n = oy, ﬂ (ai+1).n = By
define an operator e &£ g l(K),(Pl(K))Z)n .‘,;&(é'*(x)_,
2, 1)
(P, (X))4).
In [9] properties of [1 were studied. Let us denote
MK) = 47 = (v1s¥) v € P (K), § = 1,25 divv =03
UR) = { VeH1(K), divV =0}
We proved:

1) Ne LUK, DK
2) N¥=7 yverx)N?

L T ——

1) € (X,Y) denotes the space of linear bounded mappings
of X into Y.
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\ - 6V2 25 —

x)
V?eaz(K),
where h = diam K and o is the minimal interior angle of K
(enalogously in R, for n>2, see [10]).
Our aim is to prove the following
Theorem 2. Let 'v’eﬁ?'i(x), J = 1,2, Then

(4) v =1l ?lO,K éC’Mle B’xr

where h = diam K, oc is the minimal interior angle of K
and ¢ is an absolute constant.

Before the proof we introduce some notations and we
recall the well-kmown facts. Let K be the triangle with
the folloving vertices: Q, = (0,0), Q= (1,0), Q3 = (0,1).
One can easily show that there exist the unique affine map-
ping F: R,— R,, F(X) =Bx + b, Be & (RyyR;) regular,
be R, such that P(R) = K. let h be the diameter of K and @
the diameter of a circle inscribed in K (ﬁ,{a have the

same meaning for ﬁ). In [11] was proved that

(5) IBN& , pElre X
¢ @

and
5% 2t1°° < X < pe (oc is the same as in
w2, ‘2 F

Lemma 1. Let [1 be defined through (Jj),(jj). Then

Q ~

© ANPY ¢ ——laet B2 P, p VPR,

- 668 -



where 3’ = VoF = (vie Fyv, 2 F), ¢ is an absolute constant.

Proof: using Fubini’s theorenm:
= - 1/2 3 A~ , 1/2
1M ¥), g= laet BIVS INTF[, g2 aet|Bl

~ s
(mes £)1/2 “n?“a?(ﬁ) = Vzjaet BIV2 1IN ?li'(x)'

Let a;8;,, = F(I), where I is a side of K, which is determi~-

i+l
ned by (0,0),(1,0) and let F|; be the restriction of F on I.
Then it holds:

< 3 ey A
7,¥=wnlt) + Sl G =T -
Hence ,
-3 3 2 N A A
|t2®, AP 14 = | [ @ alt ae| = g ] v A Dasle

%A

1 e A
2,4y1/2 . 2
cqi¢ [ 1T7Pa)2 2 Ba3 1V, 3

~

vhere q; is the length of a;a,,,, ﬁéi) = A,!(‘i)o P!I and 3

is the norm of the mapping o : T 1) —> T 2(2K) such that
4 V= (¥),%,) (¥ are the traces of v; on 3 K). A direet

calculation yields that
(). 42
det A T 3>

where A‘}) is the matrix of the system (j). Using Cramer’s

rule we obtain
A A,
lecilé'éll?"l’ﬁ, Lps| ¢ é‘ﬂ?ll,ﬁ.

From (jj) and Creamer’s rule it follows e.g. for ﬂ?(az) =
= (wy (a5),wy(a5)):
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because the det (7*(1) 7(2)) is equal to the simus of the
angle between n (1),3’(2). Similar estimates hold for the
remaining values of W at the vertices. The assertion of our
lemma now follows from the fact that [1 ¥e (PI(K))z.

Proof of Theorem 2: for j = 2 (analogously for j = 1),
It holds:

o (#-N73)

let us denote

(8) £(¥

s ~ N\ A
(- NF8), ¢ = laet Bl (¥- 7,8, =

A

laet B[£(¥),

A A
where V = (31,92), Vi =vieF, Let ud examine tke funetjo-

nal £. Fron (2) and (8):

® 2@ =a V Pe (B (10)2
Now

N

a0 12D IR 2 1P- AV g 1B, 217 1y g+
~ » 1] »
+ 10 V“o’f{).
N\
Using (6) we estimate I [1 '\'r’“

Ao
o,K*

- 670 -



IOV o = laet BIY2 [ F]. « £ = [9] 2
L P e V ok £ sz iz

From this and (10):

A
A A A c a8
an 1E@Le 18,8 Q* )17y 2 £
-1/2 ¢ 1, 2
claet BTG, ¢ A+ o VIV %

Using (11) and Bramble-Hiltert lemma (see [11],[12]) we
obtain:

A
(12) (21 ¢ claet BITV2UF), ¢ 0+ 20 V|5 2

where ¢ is an absolute constant. Using the well-known fact

that (see [111)

1Pp 22 1812 laer B2 9, ¢

?
and (8),(12):
A
c

> (212
12(F)] & c(1 + Mw)ﬂBﬁ “‘"o,x“-"lz,x'

From this, (5),(5°) and (7) we obtain the assertion of our
theorem. )

For details how to use Theorem 2, see [9],[10].
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