Previous |  Up |  Next

Article

References:
[1] F. E. BROWDER: Existence theorems for nonlinear partial differential equations. Proc. Symp. Pure Math. 16, Amer. Math. Soc. (1970), edited by: Shing-Shen Chern and Stefan Smale. MR 0269962 | Zbl 0211.17204
[2] D. G. DE FIGUEIREDO: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 15 (1974). 415-428. MR 0365254 | Zbl 0296.35038
[3] D. G. DE FIGUEIREDO: The Dirichilet problem for nonlinear elliptic equations: A Hilbert space approach. Partial differential equations and related topics, Lecture Notes 446 (1975), edited by K. A. Goldstein. MR 0437924
[4] S. FUČÍK M. KUČERA J. NEČAS: Ranges of nonlinear asymptotically linear operators. J. Diff. Eq. 17 (1975), 375-394. MR 0372696
[5] P. HESS: On a theorem by Landesman and Lazer. Indiana Univ. Math. J. 23 (1974), 827-829. MR 0352687 | Zbl 0259.35036
[6] G. HETZER: Some remarks on $\phi_+$-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations. Ann. Soc. Scient. Bruxelles 89 (1975), 553-564. MR 0385653 | Zbl 0316.47041
[7] G. HETZER: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type. Comment. Math. Univ. Carolinae 16 (1975), 121-138. MR 0364814 | Zbl 0298.47034
[8] G. HETZER V. STALLBOHM: Eine Existenzaussage für asymptotisch lineare Störungen eines Fredholmoperators mit Index $0$. to appear. MR 0458262
[9] G. HETZER V. STALLBOHM: Coincidence degree and Rabinowitz's bifurcation theorem. to appear.
[10] E. M. LANDESMAN A. C. LAZER: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623. MR 0267269
[11] J. MAWHIN: Nonlinear perturbations of Fredholm mappings in normed spaces and applications to differential equations. Trabalho de Matematica No 61, Univ. of Brasilia (1974).
[12] J. NEČAS: Les méthodes directes en théorie des équations elliptiques. Paris (1967). MR 0227584
[13] J. NEČAS: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14 (1973), 63-72. MR 0318995
[14] L. NIRENBERG: An application of generalized degree to a class of nonlinear problems. Proc. Symp. Functional Anal., Liège (1971). MR 0413207 | Zbl 0317.35036
[15] M. SCHECHTER: A nonlinear elliptic boundary value problem. Ann. Scu. Norm. Sup. Pisa, Ser. III, 27 (1973), 707-716. MR 0369912
[16] C. A. STUART: Some bifurcation theory for $k$-set-contractions. Proc. London Math. Soc. (3) 27 (1973), 531-550. MR 0333856 | Zbl 0268.47064
[17] S. A. WILLIAMS: A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem. J. Differ. Eq. 8 (1970), 580-586. MR 0267267
Partner of
EuDML logo