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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
17,2(1976)
e
ON THE EXISTENCE OF WEAK SOLUTIONS FOR SOME QUASILINEAR
ELLIPTIC VARIATIONAL BOUNDARY VAIUE PROBLEMS AT RESONANCE

Georg HETZER, Aachen

Abstract: The equatiom Au = Bu under variational boun-
dary conditions in the sense of F.E. Browder is considered,
where A is a symmetric, uniformly strongly elliptic, linear
partial differential operator with nonzero null space, and
B is a sublinear one of the same order with a suitable asym-
ptotie behavior with respect to the null space of A, If B
satisfies a Lipschitz condition for the terms of highest or-
der, the existence of a weak solution is proved. Properties
of selfadjoint Fredholm operators in regerd to the set-mea-
sure of noncompactness and set-contractions are the basic
tools of this paper.

Key words: Coincidence degree, set-measure ofroncom~
pactness, set-contractions, Fredholm operators, alternative.
problem, boundary value problem, nonlinear partial differen-
tial equations.

AMS Primary: 47TH15, 35360 Ref. Z.: 7.956
Secondary: 47B30

Introduction: lLet £ be a bounded domain im RY(N e W ),
A be a linear, wniformly strongly elliptic, symmetric parti-
al differential operator on £ of order 2m(m e¢N), and B be
a sublinear partial differential operator of order @(f«2m),
given in divergence form. The following destination is »o:ften
drawn: Au = Bu is called a quasilinear equation, if & = 2m,
& semilinear, if ®<2m.

In this paper we are concerned with variational boundary
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value problems, in the sense of F,.E, Browder ([11), for Au =
= Bu in the quasilinear case, when Au = 0 has at least one
nonzero solution, satisfying the boundary conditions (i.e.
the resonance case).

The study of such problems for the semilire ar equatiom
was initiated by Landesman and Lazer in 1970 (1101) and is
continued by De Figueiredo, Fu&ik, Hess, Ku&era, Mawhin, Ne-
tas, Nirenbefg, Schechter and Williams (see e.g. :,‘»['21,131, ¢
(41,£531,0121,1133,0241,[151,0171). In order to emsure the ex~
istence of solutioms in that case, they use the Hilbert apa-
ce approach and "topological” arguments, like Schauder’s f£i-
xed point theorem or the degree theory for comple tely conti-
nuous nonlinearities.

Even, if & Sobolev-Rellich embedding theorem is applic-
able, the nonlinear part is no longer completely continuous
in the quasilinear case. But, when B satisfies a Lipschitz
condition with respect to the derivatives of order 2m, we can
use a coincidence degree continuation theorem for nonlineari-
tires, which are set~contractions, for deriving the operator
theoretic results, we need. This theorem is stated in [71 and
derived in a more general versiom in .[6].

Section 1 contains the later needed notations and asser—
tions. In Section 2 we compute the lower bound of a lingar
selfadjoint Fz'-edhaln operator in a Hilbert space with respect
to the set-measure of noncompactness by its essential spect-
rum, which is basi ¢ for our existence theorem. In Section 3
the boundary velue problem iy formulated and solved. Special

cases are mentioned in Section 4.
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1. Here we recall some definitioms and preliminary
results., Let Z be a metric space and M be a subset of Z,
then the set-measure of noncompactness 4 of M is defined
by:

¥ (M):= inf €| €> 0, there is a finite covering of
M by subsets of Z with diameter lower than e ¥ .

For metric spaces, Z, Z and k € R*  we call a continuous
function f: Z— Z a k-set-contraction, iff < (f(M)) =

= k4 (M) for each bounded subset M of Z,, and completely con-
tinuous, iff f(M) is compact for each bounded MgZ, Further
for a function £ D(f) denotes the domain of f, R(f) the ran-
ge. Concerning the coefficient field of the here considered
spaces, we suppose K € {R,C 3} in general, but K =R,

if a real valued function space occurs,

Let X, Y be Banach spaces and L: X2D(L)—> Y be a clo~
sed linear operator, then L is said to be a ¢+-operator,
iff the null space of L, denoted by Ker(L), is finite dimen-
sional, and R(L) is closed. If additionally Y | R(L) is fini-
te dimensional, we call L a Fredholm operator and ind(L):=
:= dim(Y | R(L)) the Fredholm index of L. Further we set:

L(L):=sup {r|r eR+, r (M) & (L(M)) for each bound-
ed MED(L)%.

In [6) it is shown that £(L)>0, iff L is a ¢+-operator.
Now let us make the following assumptions:

(a) X, Y are Banach spaces and L: X2D(L)—s> Y is a
Fredholm operator with ind(L) = 0

(v) kx eC0,£(L)) and N: X—>Y is a k-set-contraction.

(a) involves the existence of continuous projectors P: X—>X

- 317 -



and Q: Y—>Y with R(P) = Ker(L) and Ker(Q) = R(L), and of
a linear isomorphism J: R(Q)—>~ Ker(L). Further we denote
the pseudo-inverse of L associated to P by Kp, i.e. Kp:=

= (L] (I - P)(X) )1, The following assertion is basic in

regard to Section 3.

Theorem 1: Let (a) and (b) be satisfied and P, Q, Kp
and J be defined like above. Assume further:

(1) There are d'e [0,1) and ¥ , w e TR+, such that
for xeX:

: o
ke (T -Qelxl culxl® + 9 .

(2) TFor each bounded subset W of R(I - P) there exists
a t >0, such that for all tzt,, all zeW, and all we Ker(L)
with lwl = 1 we have: Qo N(tw + t% z)+0.

(3) There is a t >0 with:
deg(Je QoN| Ker(L), £x | xeKer(L), I x [<13,0)+0 for t=t.

Then R(L - N)2 R(L).
Here deg means the degree for a finite dimensional normed spa-
ce. The proof is straightforward in regard to the proof of
Theorem VI.4 in [11) and the degree continuation result for

k~-set-contraction in [6].

2, In dealing with applications, & calculation of 2(L)
for a given Fredholm operator L is necessary. Direct estima-
tion can be given in the case of ordinary differential equa-
tions ([7]1,(81,09]), but they fail, treating partial diffe-
rential equations. Another computation, developed in this

sectiom, is available however, if the given problem involves

- 318 -



a selfadjoint Fredholm operator in a Hilbert space.

Let H be a Hilbert space over K and L: H2D(L)— H
be & closed linear operator, then we denote the spectrum of
L by 6 (L) and define the essential spectrum of L by:

G, (L):= §A| A e & (L), A is not an isolated eigenvalue
of finite multiplicity? .
Observe that many different definitions are used, but that

they all coincide, when L is selfadjoint. Now we can prove:

Theorem 2: Let H be a Hilbert space over K and L:
: E2D(L)—> H be a closed, selfadjoint, linear operator.
Then £(L) = inf {|Al| A e 6,(1) }.
Proof. For convenience we set: Q:= inf {|Al I?L e &,(L)}.
1) We show: £(L)£Q.
It is well-known that for A e 6'e(L) there exists a sequen-
ce (x,) N € "V with: lx, I =1fornelN 5
lim(Ax) - Ix ),y =0, and (x ) v has no convergent sub-
sequence. Hence: ¥ (ix |neN3)>0and 2 ({Ix |nelN$)=
T({-’L:rh[n €elN3). Then 2 ({fAx |ne N3) =
Al g (4x | neN3 ) involves: £(L) «1Al  for each
Ae &,(L), therefore £(L)<Q.

2) We show: £(L)zQ.

If 0 e & (L), the assertion is obvious. Otherwise Q>0 and
L is a Fredholm operator with ind(L) = O, because L is assum~
ed to be selfadjoint. We first consider the case K = C .
Since L is selfadjoint, L is reduced by Ker(L) and Ker(L)* .
We set L:= L| Ker(L)* and note that L, is en injective,
selfadjoint, linear operator in Kez-(l.)'L . It follows from

& (L) = 6(L Ker(L)) v &(L)) and 6(L|Ker(L)) = £0% that
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&, (L) = 6,(L). Since Q>0 Proposition 1.1 (b) in [16] says
that L;l is a k-set-contrectiom with k<Q L, We show £(Ly) =
ZQ. Let BeD(L)) be bounded. We can assume % (Ly(B)) < @ ,
and obtain from 'a"(LII(L(B)))A-k 7(L(B)): X1y (B) 2 7(L(B)),
which implies k™l A£(L,), hence £(L)=Q. If P is the ortho-
gonal projector on Ker(L), we have for each bounded subset B
of D(L):

#(B) = L (P+I-P)B)I£4[PB)+ (I-P)BI=
£ ¥ (P(B)) + ¢ ((I - P)(B)) = ¢ ((I -P)B)) £ (B),
using that I - P is nonexpansive and P is completely continu-
> (I -P)(@®B)).

Since Ker(L) and Ker(L)Y reduce L, Ls(I - P) is equal

ous. Hence 4 (B)

to (I - P)e L and we conclude analogously:
¥ (LB)) = yLLe(P+I-P)B)] £ w(Le(I-P)B))
= 4 ((I - P)e L(B)) = y(L(B)),
which verifies ¢ (L(B)) = 9 (Ly o (I - P)(B)). Both assertions
together ensure £(L) =.£(L;), which proves 2) in the complex
case,

For K =R we consider the complexification H' of H
and the operator L+, induced by L. L' is selfadjoint and this
implies: &,(L) = 5'e(L+). Therefore £(L')>Q. On the other
hand we obtain for € > O and a bounded B D(L):

F(LB)) = (L' (Bx40¥))2(L(L) -e) »(Bx40%) =
= (Q -€) ¥ (B),
which involves: £ (L)ZQ.

3. Now we can treat the boundary value problem, which

is indicated in the introduction. First of all some notations
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and conventions. We always consider real-valued functions,
defined on a bounded domein £ of the RN with ¥ e N .
For e 72N e set Il =“§é"pri(cc), where pr; means
the i-th coordinate projection, and denote the oc-th deri-
vative in the weak sense for a function u on £ by D®u.
For me Z* the Sobolev space Wm'z(.ﬂ.) is defined ty:

W2 2(0):=4u| ueLz(.n.), D¥ue1?() for lc| < m?.

For u,ve Wm’z(_(}_) an inner product is given by:
> ,i= D%® e
{u,v m,2 Iud%on. j.;). u(x)D*v(x)ax.

The norm, associated to <, > will be denoted by

m,2?
I “m,2' Let c‘:(n) be the set of (’3“’ -functions with com-
pact support in £l , then w’;"z(.n.) means the closure of
C‘:(_D,) in wm’zm) with respect to | lm - Finally we set
for me Z+, s, to be the cardinal number of’the set S :=
fec|ceZ™, lawl% 0}, ana §_(w(x):=

(D“’u(x)),edé,m .

n

.
n

With these notations we can state the assumptions, we

will make in this section.

(H1) m,NeN. O ¢ RY is a bounded domain, such that
the natural embeddings of Wm’z(.&l) in Wn’z(.D.) are complete-
ly continuous for O£ n<m. Further suppose that for o, fs €

€s axpe 1®°(0) and % = %pec -

(H2) V is a closed, linear subspace of Wm’z(.().), which
contains Wﬁ’z(_ﬂ.). a: VxV—>TR , defined by

a(u,v):= (x)D®u(x)DPv(x)ax

=
lec!, \PY £m ‘,fo.a*"@

is uniformly, strongly elliptic.
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Then, assuzing (H1) and (H2), a continuous selfadjoint, li-
near Fredholm operator L: V—> V is d&fined by: (Iu,v)m’z =
= a(u,v) for u,veV.

In dealing with the resonance case, we further suppose:

(H3) dim(ker(L)) >0,

Concerning the nonlinear part we make the following hy-
potheses:

(H4) For oc & S g, : £ x Rsm—-> R saatisfies
Carathéodory ‘s conditions, i.e. for each ye R ™ 8o (0 »¥)
is measurable in L) , and for x € L (a.e.) gy (%, ) is
continuous. Further the following growth restriction is as-
sumed. There is & ¢>0, 6 e [0,1) and © € L2(IL), such

that
lg @l sec = fpe, 0%+ 0@
1plem I
s
is satisfied for each y e R " and || ¢ m, and for xe N

(a.e.).

(H5) For o € S there is a meas:rable function h,  :
: Ox = —>R,where X :=4y|yeR 2 iyl =12, and
Q € /Y76 (Q) with: |hy (x,y)] € O (x) forxe D
(a.e.) and ally e = , and: If (y ) .y € =" it
yp—>y and (@p)nem € RY  witn ®p—> 0 , then for

all o € Sp and for x € fL (a.e.) we have:
. &
ml_lfxw g, (x, ganyn)/son = h (x,5).
We set for v: 2 —R : ﬂo(v):= {x|xe O, v(x)£02.

(H6) For all we Ker(L) with |w um,2 =1 and allx € Sn
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8
nf@%)h“(s, §,() (/1§ ) D) 1§ () (x)° D¥wix)axzo,

-]
and for at least one o € Sm the integral is strictly grea-~

ter than zero.

(H7) There is a X e R ¥ with k< inf £ 2| l.?\. e &,(D)},
‘'such that

lgw(x,z,yl) - Be(x2,7)l £ & | vy - yzl
for all o £ S, for x € Q. (a.e.), for all z e R *n-1 and
all y ¥, € Rsm'sm—l.
If (H4) is satisfied, we define a generalized Dirichlet form

by :

n(u,v):= ‘xﬁl;m fn. 8o (X, §5(0)(x))D*v(x)ax for u,veV,

i.e. the nonlinear part is given in divergence form. It is

well-known that a continuous operator N: V—> V is given by:

{Nu,v>_, =nlu,v) for u,veV.
m,

In the sequel we are concerned with the following boun-
dary value problem:
Find a solution u of

® a(u,v) = n(u,v) for all veV.

For a discussion about the type of this problem, we refer to
[1] and mention only that V = w‘g’z(a) leads to the Dirichlet
boundary conditions.

Further, in regard to [41], we notice that, when the boun-
dary of £l is suitable, we can also treat @ <for a linear

Dirichlet form:

A(u,v) = alu,v) +lx§p&ﬁm—1 Ja‘nkecﬁ(x)D""u(x)Dﬁv(x)dS,
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where Acc{s e LC(AL) and dS is defined, as in [12] chap.
3.

We obtain the following existence assertion for ® :

Theorem 3: Let (H1) - (H7) be satisfied.
Then there exists a solution ueVof ® .

The proof will be given in three steps:

Lemma 1: Suppose that the assumptions on f. and V in
(H1) and (H2) are satisfied, and (H4) and (H7) are fulfilled.

Then N is a k~set-contraction.

Proof. As mentioned before, we know the continuity of

N. For o« € Sm we set N by:
CNeu,v oy o= [ gy (%, §,00) (0D v(x)ax.

If |lol< m, N is completely continuous. Therefore we are
done, if Ni= &, N, is a k-set-contraction. Let
2 Sn~m-1 2
Z:= I°(Q,R ) and ¥ € Z. The map Tocyr v— I°(0.),
defined by Toe 40 (W) = g (¢, §_q(W)(e ), ¥), is complete-
ly continuous with respect to | I , onVand I I, on
2 . 1 b}
L°(f), since (H1) ensures the complete continuity of
s
ur—» ( Em_l(u),qr) from V into (LZ(I).)) M  and because the
Nemyckij operator, induced by g, , is continuous from
8

(Lz(_Q)) T into L2(0). Further the uniform equicontinuity
of the family {ur— (§, (), )3,z and the complete
continuity of each map u+—> (§,_;(u),y) imply that

(T is uniformly equicontinuous on bounded sets.

“‘af)?‘z
Now, let BE€V be bounded and € > O. Then there ex-
ists & finite covering (B;,...,B, ) of B by subsets of B

with diem ,(B;) £ +(B) + €/2 for 1£i4n. Further, using
b
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the above stated properties of (T, 1},.)qmzA s we obtain for
iedl,...,n} a covering (Cl,..., J) of B; by subsets with
dlame,z(T“_ v(c@)) £ € /28 for 1£ @4 jjend ¥ e Z,
Hence we can suppose that the covering (Bl""’B‘n) addition-

ally satisfies:

. ' K3
dlamo,Z(Ter.,'qr (Bi)) £ e/ZSm for 1¢i4n and ¥ € Z,

Then we have:

u%-mu

= sup | = f [g, (x, §m(u)(x)) -

llar 2 = 4 lxl=m D

- g4 (x, '§ (v)(x)] DX w(x)ax |

Lole, (x, §, (W &), o (w)E) -
m-1 n

=(\'\U’F \&l:fm.
- Bx (x, §m_l(v)(x), N (V) (x))] D*w(x)dx| ,

where 7 (u)(x):= (Du(x)) )< m « Then we. obtain:

1M -

u Nv!im’zbsl\i’gﬂm i ‘%I:m[ fa | 8o (%, gm_l(u)(x),
‘Qm(u)(x)) - g, (x, gm_l(v)(x), 't)_m(v)(x)l ID®w(x) | dxJ &
éﬁ::’qmm.‘4 lxl-m[j Ig‘— (x) g111 l(u)(X)’ ozm(u) (x)) -

- 8o (X, §p X)), A (M END]1 D¥wix) | ax +

* J ) g (xy §p 1 (), () (x)) - g (%, §yq (V) (),
N | D¥w(x) | ax] £

[x [ 1m0 - 2,01,

£ su
ll'u?!l ‘°‘"

.ID"‘w(x)l dx + fn_ | g (%, § g (u)(x), mp(v)(x)) -
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g4 (%, € p-1(v)(x), (V) x| FD¥wx) lax 1

gl Y ot DL g ) -

) 1 2ax 32 [ [ 1 pew(a ] Zax1 V2 4

* ﬁ:ﬂ\m,zs 1 l§=rm L f_n_ ’ Be (=, gm-l(u)(")' "Zm(V)(X)) -

2 172
- g (5, §21 (M@, (M) | 2ax I3[ [ | owlol e %

[N

Klu-vly o+ (s -8y de/2s 2x(B) + €/2+ 2/2.

Hence dismy » (N(B;))£k¥(B) + ¢ for 14i4n emd € >0,
therefore, ¥ A yex +(B).

Lemma 2: Let (H1) - (H6) be satisfied. Then the following
assertion holds: For each bounded subset W of R(L), there ex-
ists a t,>0 with: { N(tw + td'z), w> >0, for all tzt,
all ze W, and all weKer(L) with Jwl , = 1.

?

Proof. :therwise there exists a W&R(L), (tn)rie'N e

+ [ N
e (R7I40¥%)" | (w)pen € Ker(L) and (v ) .y € W
satisfying W is bounded, t —> o0 , fl wnllm p= lforme N

?

and:

o,y B r Sty + Gr) (EDDF W ()ax 20,

By going if necessary to subsequences, we can assume:

There is we Ker(L) with: llw, - wl m,2 > 0

&-1
Ywy +t "y, - 'lm,z——r 0, D¥w,(x) —» D¥w(x) for x € &

(a.e) and each « € S, and D w,(x) + ti'lb“vn(x) -

- D¥w(a)—> O for x € 0 (a.e.) and « e Spe Now let o €
€ Sm'
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t!’le So 8 (%, En(tywy + tivn)(x))D"‘wn(x)dx =

t;e g (x, Enltyw, + tgvn) (x))D*w(x)dx +

+

t;g fn_ 8o (X, Epltw + tivn) (x)) [D¥wy(x) -

D w(x)] dx =: I, + IT)
Ve claim: lim II, = O.
) & L1678, (%, Epltyw, + t v) ) | Zax1 172,
MD¥w, - D¥w 110’2.
Since ID%w - D¥w ﬂ°,2—>0, we are done, if the integral
is bounded. Using the growth condition in (H4), we find:
o 1) 8 (xy §pltywy + € v) ) | %ax 2
= Lle B 1%+ 7 v [+ 50 0] fax

£ 2c% Eg:m f.n. | I)fa(w‘n + ti'q vn)(x)\ 26 4x +

-2¢ 2 2 6-1 2 ~26 2
t2t, NeN] o44e spllw, + ¢ vl m,2* 2t 181 5,2

+ 2s; meas ).

. §-1
Since (wn + ot vn)neN

the bounded,ss is proved.
We have for ];1:

is al ll convergent sequence,
m,2

o6
Th Tt o % 8

Since D"“w'n(x) + tg“' DX v, (x)—> D¥w(x) a.e., in X, we

(x, §plt oy + to V) (x))D® w(x)dx.

find for almost each x € R (D¥w) an n (x) € N with:

D"‘wn(x) + tg’"’ D“vn(x)=1=0 for nz n (x).
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Hence \§m(wn + t:‘1 vn)(x) | > O for almost every x €
oc .

€ QO (D*w) and all nzn,(x). Thus lim |§ (tw, +

+ tg vn)(x) =0 hélds in no(D"‘ (w)) a.e. . Therefore

(H5) implies for almost each x € Q (D*w):

@

. -6 6 =
m;:.imw th 8o (X5 §pltywy + t) V) (X)) =

=g (x, §, 0/ [§ 5 1), EIRCICI N

(For nzn (x) choose y, = €ty + tg v ) (x)/ | § (t W, +

+tv ) (x)| end @ = lgm(tnwn + ti vn)(x)l .) Now @ and
the boundedness of (t;e By oy Epltyw, + tﬁ ¥ ) ey in
12(9) involve the weak convergence of (t;g 8 (* §ntawnt
+ 2 v N o heele , §p )/ TE (1) 1§ )| in

12(0(D%w)). Hence

v L= [ h(x, a0 )/ 1§ m @ 1) 1§ 1S

m->c0

D*¥w(x)dx.
Then (H6) implies:
. -6 ’ & o
‘.3..3;1‘1; lx%n‘fﬂ- o B (X, Epltyw, + ty v)) (x))D¥w, (x)dx >0,

which is a contradiction,

Now we can prove Theorem 3:

Proof to Theorem 3: We realize the hypotheses of Theo-
ren 1 for X =Y = (V, | Hm’e) and for the above defined L
and N. Since L is a selfadjoint Fredholm operator, R(L) is ~
equal to Ker(L)‘L ‘. Hence we can take the orthogonal projec-
tor on Ker(L) to be P and Q, and J to be the identity of

Ker(L). The condition "N is g k-set-contraction with k< 1(L)"
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follows by Lemma 1, Theorem 2 and assumption (HT).
We derive the hypotheses (1) - (3).
(1): Let ueV and & =>0.

= oc 3
I tva m,2 - Ili;lﬁm,g?"‘ Er8 \eﬁ'mv u (=) §m(U-) ()% v(x)ax |

2, A/2
'éla}llmf*l mzenf&'gac(x’ Enlw) ()Y ax I,

4
ot
II'D V“o,a

£ sup L
Nl 9= J‘;"

= (el D@u(x)l€+
Blem

+ @ xN2ax]M2, = fpxvll »
Jc|£m 0y

£[2¢2 fn ( mém | DPu(x)lzgdx +210 “5,211/2

é[Zczsm ‘mzém fnl pPux)®Pax1? + V2 lle “0,2

£ Ve Ve E lullf, , + VE R8I, 4@l u“;’z + 3

where 4’2 , ¥ are suitable constants, and ¥ satisfies:
Mo &clgl, foreach geI?(Q), Here Wl
means the quasinorm, given by [l I} := ( fn l (x)|2§::)l/26.,
which is weaker on I°(Q) then | no,E' Now the boundedness
of the pseudo-inverse K ensures |l Ma “m,zé @l u “1,2 + Vv
for suitaeble- w ,V and 6 €[ 0,1) (the case & = 0 is obvi-
ous), mereﬁ=KP°(I-Q)eN. ' ‘

(2): Let W be a bounded subset of R(L), then, using

Lemma 2, there exists a 1,z 0 with:

(k) <N(tw + tgv,w>>0 for t=t,, wéKer(L), llwﬂm 2 =1
?
and ve W, e

This implies Qe N(tw + tfv)40 for t= tos wekKer(n),
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I\wﬂm’z =1and veW,
(3): Set v =0 in (%), then {QaN(tw), tw) =
= t {N(tw),w> >0 for t2t,. Therefore the Poincaré-Bohl

theorem implies:
deg (Je Qo N|Ker(L), fw!l weKer(L), I wllm 2<t},0)=5=’0.
?

Now Theorem 1 yields: There is ueV with: Iu - Nu = 0, which

implies: a(u,v) = n(u,v) for all veV,

4. Here we will make a few notes on 'fheorem 3:

Concer.aing the lirear part we only mention:

Remark 1: The spectrum of L must be determined with
respect to V, i.e. we have to consider an equation of the

form:

, it I =a s [ px N
.c,pesmfaa«a (D% u@DPv(xax =4 = [ DFu(x)Dv(x)ax
for veV. In regard to (H1) and (H2) we can suppose without
loss of generality: 8yp = Q for l<l + I 31 < 2m.

If we consider the Laplacian for example, i.e.

%.‘:N fn Diu(x)Div(x)dx,

<Au'v>m,2 = 1
ve obtain 6,(A) =411}, hence 2(A) = 1.
Assumptions, analogous to (H4) - (H6), appear in [31]. .

Remark 2: One observes that the choice of & is uni-
que, because it depends not only on the growth condition in

(H4), but alsoc on (H5} - (H6). Instead of @ we can consi-~

der:
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(xx) a(u,v) = n(u,v) + <£,v 7.0 for veV,
H

where f is given functiom of Lz(n.), by setting g = g, + f.
If © >0, we obtain: ‘

Corollary: ILet (H1) - (H7) be satisfied and 6 > 0.
For fe Lz(.Q.‘) there exists a solution ueV of (X x).

We end with some special cases:

Remark 3: If g, depends only.on x and the oc-th de-

rivative (we write then g, (x,D®u(x))), the conditions (H5)

and (H6) are reduced to:

(85)° There exists functions h;e: LZ/].—B’ and

n, e /1% witn:

»

JH2, Ea 2/ 171 = By (x) for x € 0 (a.e.).

(H6)° For all we Ker(L) with \lvrlim 5> =1and all «€
’
€ Sm
+ 1+6 - 146,
he (x) | D¥w(x)| ax - | h_ (x) ) D®w(x)| 20
n{@&m) « .n.__(J)"‘"ur) < ’
where ..D.C,.) (D*w):=4fxlx e O , D“w(x)(z)o}, and at least

for one « € Sm the integral is strictly greater than zero.

Remark 4: If V = w‘g'z(n) and 6 = 0, Theorenm 3 is a

generalization of the Landesmann lazer result (e.g. [10],

{17)). When we consider equation (X X ) (see Remark 2), we

receive the following condition for lel =0 in (H6):

fnf(x)w(x)dx < _nf( , ho(x, §,00)(x)/ 1§ (W (x)Dwx)ax.

u'w'
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Remark 5: To prove Theorem 3.2 in [4]) for the quasi-
linear case, we need the assertion of Corollary VI.6 in
[11] for set-contractions, which cen be derived in the sa-

me manner from Theorem 1 as the Jjust mentioned Corollary

from Theorem VI.4 there. We omit details.

Remark 6: Instead of Theorem 1 we can use a theorem

for set-contractioms, corresponding to Theorem 1 in [21, to

prove Theorem 3.

1]

2]

{31

(4]
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