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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,2(1976) 

m 

ON THE EXISTENCE OF WEAK SOLUTIONS FOB SOME QUASILIHEA.R 

ELLIPTIC VARIATIONAL BOOT.DAHT VALUE PROBLEMS AT RESONANCE 

Georg HETZER, Aachen 

Abstract: The equation Au = Bu under variational boun­
dary conditions in the sense of F.E. Browder is considered, 
wnere A is a symmetric, uniformly strongly elliptic, linear 
partial differential operator with nonzero null space, and 
B is a sublinear one of the same order with a suitable asym­
ptotic behavior with respect to the null space of A. If B 
satisfies a Lipschitz condition for the terms of highest or­
der, the exis'tence of a weak solution is proved. Properties 
of selfadjoint Fredholm operators in regard to the set-mea­
sure of noncompactness and set-contractions are the basic 
tools of this paper. 

Key words: Coincidence degree, set-measure ofnoncoDs-
pactness, set-contractions, Fredholm operators, alternative, 
problem, boundary value problem, nonlinear partial differen­
tial equations. 

AMS Primary: 47H15, 35J60 Ref. 2.: 7.956 

Secondary: 47B30 

Atroduction; Let SI be a bounded domain is 1 (Net), 

A be a linear, uniformly strongly elliptic, symmetric parti­

al differential operator on il of order 2m(m fe if), and B be 

a sublinear partial differential operator of order SCS.fe2m), 

given in divergence form* The following destination is often 

drawn: Au = Bu is called a quasilinear equation, if m *= 2m, 

a semilinear, if Si<-c2iu 

In this paper we are concerned with variational boundairy 
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value problems, in the sense of P.E. Browder (£12), for Au = 

=- Bu in the quasi l inear case f when Au = 0 has at least one 

nonzero solut ion, sat isfying the boundary conditions ( i . e . 

the resonance case ) . 

The study of such problems for the semilisear e(patioii 

was in i t i a t ed by Landesman and Lazer in 1970 CtlO}) and i s 

continued by Be Figueiredo, Fudik, Hess, Ku&era, Mawhin, He-

£as, Nirenberg, Schechter and Williams (see e*g.: C23,t3l , 

C43 > C53 f ai3 , t l33 f r i43 > t l5I , t l7J) . 3n order to ensure the ex ­

istence of solutions in that case, they use the l i l b e r t a p a ­

ce approach and "topological" arguments, l i ke Schauder's . f i ­

xed point theorem or the degree theory for completely c o n t i ­

nuous non l inea r i t i e s . 

Even, i f a Sofeolev-Bellich embedding theorem i s a p p l i c ­

ab le , the nonlinear part i s no longer completely continuoiaa 

in the quasil inear case* But, when B s a t i s f i e s a Lipschitz 

condition with respect to the derivatives of order 2m, w© can 

use a coincidence di^gtm continuation theorem for nonl ineard-

t i r e s , which are set-contract ions, for deriving the opera tor 

theoret ic r e s u l t s , we need* This theorem i s stated in t71 and 

derived in a more general version in-tSl* 

Section 1 contains the l a t e r needed notations and a s s e r ­

t ions . In Section 2 we compute the lower bound of a l i n e a r 

selfadjoint Fredholm operator in a Hilbert space with r e s p e c t 

to the set-measure of noncompactness by i t s essent ia l s p e c t ­

rum, which i s baai c for our existence theorem* In Section 3 

the boundary value problem is formulated and solved. Spec ia l 

cases are mentioned i n Section 4* 
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1. Here we recall some definitions and preliminary 

results. Let Z be a metric space and M be a subset of Z, 

then the set-measure of noncompactness *y of M is defined 

by: 

y(M):= inf 4 £ | e > 0 , there is a finite covering of 

M by subsets of Z with diameter lower than e 1 • 

For metric spaces, Z, Z and k e IK4" we call a continuous 

function f: Z—* Z a k-set-c on tract ion, iff -y(f(M)> = 

= k^(M) for each bounded subset M of Z„ and completely con­

tinuous, iff f(M) is compact for each bounded MsZ. Further 

for a function f D(f) denotes the domain of ff R(f) the ran­

ge. Concerning the coefficient field of the here considered 

spaces , we suppose IK c A1R , <D } in general, but K » 1R , 

if a real valued function space occurs. 

Let X, Y be Banach spaces and L: X2D(L)—> Y be a clo­

sed linear operator, then L is said to be a 0+-operator, 

iff the null space of L, denoted by Ker(L), is finite dimen­

sional, and R(L) is closed. If additionally Y [ R(L) is fini­

te dimensional, we call La Fredholm operator and ind{L):= 

:= dim(Y \ R(L)) the Fredholm index of L. Further we set: 

^(L):= sup {r | r c]R+, ry(M) -* y(L(M)) for each bound­

ed M.£D(L)J. 

In 161 it is shown that .£(L)>0, iff L is a {0+-operator. 

Now let us make the following assumptions; 

(a) X, Y are Banach spaces and L: X2D(L)—*Y is a 

Fredholm operator with ind(L) = 0 

(b) k eCO,X(D) and N: X—*~Y is a k-set-contraction. 

(a) involves the existence of continuous projectors P: X —> 1 

- 317 -



and Q: Y—*-T with R(P) = Ker(L) and Ker(Q) = R(L), and of 

a linear isomorphism J: R(Q)—^Ker(L). Further we denote 

the pseudo-inverse of L associated to P by Kp, i*e. Kp:= 

:= (L | (I - P)(X))~ . The following assertion is basic in 

regard to Section 3» 

Theorem 1: Let (a) and (b) be satisfied and P, Q, Kp 

and J be defined like above. Assume further: 

(1) There are <fe [ 0,1) and ^ , ̂  e [R , such that 

for xeX: 

I Kp o (i - Q) * Nx |1 * ̂  1 x li + O • 

(2) For each bounded subset I of R(I - P) there exists 

a t > 0 , such that for all t£t Q, all zeW, and all we Ker(L) 

with i! w II = 1 we have: Q* N(tw + t z)4?0. 

(3) There is a t Q^0 with: 

d e g ( J o Q o N | K e r ( L ) , -Cxj x e K e r ( L ) j r II x H-* t } , 0 ) 4 » 0 f o r t ^ r t Q . 

Then H(L - N)2 R(L). 

Here deg means the degree for a finite dimensional normed spa­

ce • The proof is straightforward in regard to the proof of 

Theorem VI,. 4 in til} and the degree continuation result for 

k-aet-contraction in t61« 

2. In dealing with applications, a calculation of £(L) 

for a given Fredholm operator L is necessary• Direct estima­

tion can be given in the case of ordinary differential equa­

tions ([73,[83,L9])- but they fail, treating partial diffe­

rential equations• Another computation, developed in this 

sectiom, is available however, if the given problem involves 
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a selfadjoint Fredholm operator in a Hilbert space. 

Let H be a Hilbert space over IK and L: H2 D(L)—> H 

be a\ closed linear operator, then we denote the spectrum of 

L by 6f (L) and define the essential spectrum of L by: 

#e(L):= i X | X e 0 (L), X is not an isolated eigenvalue 

of finite multiplicity} • 

Observe that many different definitions are used, but that 

they all coincide, when L is selfadjoint. Now we can prove: 

Theorem 2: Let H be a Hilbert space over K and L: 

: lf2D(L)—.-» H be a closed, selfadjoint, linear operator. 

Then £(L) = inf { I X I j X e 50(L) } . 

Proof. For convenience we set: Q:= inf -Clftl \X e fif(L)J« 

1) We show: £(L)£Q. 

I t i s well-known that for X c # e (L) there exis ts a sequen-

ce (x^) .^^ * L(L) with: llx^Jl = 1 for n e IN «#•. 

l im(&x n - ^^^neiM = °> an<* ^-^nVelN h a s n o converSe-^-t sub­

sequence. Hence: x ("*• --^1 n e N i ^ O «-d T H IiK
xl 1

 n fe W|)= 

* f i a ^ l n e H n . T h e n r < *A x^ I n e N I) = 
s l A l y f - C s ^ l n ^ l l } ) involves: JUL) £ \X\ for each 

A e <re(L), therefore X(L)^Q. 

2) We show: ^(L)>Q. 

If 0 e &e(L), the assertion is obvious. Otherwise Q:>0 and 

L is a Fredholm operator with ind(L) = 0 , because L is assum­

ed to be selfadjoint. We first consider the case K = € . 

Since L is selfadjoint, L is reduced by Ker(L) and Ker(L) . 

We set L-.:= L [ Ker(L)^ and note that L^ is an injective, 

selfadjoint, linear operator in Ker(L) . It follows tmm-

6T (L) = eT(L Ker(L))u€T(L1) and 0(LJKer(L>) » 4 0 | mat 
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#e(L) * ^e^l^*
 since Q*>0 Proposition 1.1 (b) in C16J says 

that L x is a k-set-contraction with k-SQ . We show M 1^)2 

>Q. Let B£D(L.j) be bounded. We can assume r (L-L(B)) .-< a> , 

and obtain from t (L11(L(B)))^k r(L(B)) : k""1r(B) ̂  r<I*(B)), 

which implies k"""1^^^), hence ̂ (L-^SrQ. If P is the ortho­

gonal projector on Ker(L), we have for each bounded subset B 

of D(L): 

r(B) = r t (p + i - F ) ( B ) J & r f p ( B ) + a - P H B U * 

4: r (P(B)) + r ( d - P ) ( B ) ) = r (( i - P ) ( B ) ) & r ( B ) , 

using that I - P is nonexpansive and P is completely continu­

ous. Hence r (B) = r((* - P)(B)). 

Since Ker(L) and Ker(L)^ reduce L, L-> (I - P) is equal 

to (I - P) * L and we conclude analogously: 

r (L(B)) * y[L-(P+I-P)(B)]A r ( i - ° d - P)(B)) 

= <y ((I - P) * L(B)) = y (L(B)), 

which verifies r (--»(B)) s y d ^ ^ I -P)(B)). Both assertions 

together ensure JUL) =^£(1^), which proves 2) in the complex 

case. 

For K = TR we consider the complexification H of H 

and the operator L , induced by L. L is self ad joint and this 

implies: Cf-(L) = 6*a(L
+). Therefore X(L+)>Q. On the other 

hand we obtain for e -> 0 and a bounded B£D(L) : 

r(L(B)) = y(L+(BxiO> ))2(X(I+) -e) r(Bx i 0? ) = 

= (Q -e) r (B), 

which involves: JL (L)2 Q. 

3. low we can treat the boundary value problem, which 

is indicated in the introduction. First of all some notations 
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and conventions. We always consider real-valued functions, 

defined on a bounded domain il of the 1R with I e M . 

For oo e Z+ we set loci = 2 Mpr.:Ccc), where pr. means 

the i-th coordinate projection, and denote the oc-th deri­

vative in the weak sense for a function u on -Q. by D^u. 

For meZ + the Sobolev space Wm'2(il) is defined ry: 

Wm»2(il):=-lu| ueX2(il), D^ueL^il) for loci £ m }. 

For UjVeTf' (il) an inner product is given by: 

< U' V >»,2 : = .«,?,-, L -""-(x>D*v<x>ax. 

The norm, associated to < , > 2, win be denoted by 

& ' m,2# Let O"*15 be the set of c<* -functions with com­

pact support in il , then W^>2(JL) means the closure of 

C^(il) in Wm'2(il ) with respect to I |ffi2. Finally we set 

for mcl , sm to be the cardinal number of the set S := HI m 

:= - C o c | o c e 2 + N , I « U m } , and fm(u)(x).= 

:= ( J * u W ) w ^ . 

With these notations we can state the assumptions, we 

will make in this section. 

(HI) m,NelH. il £ TR is a bounded domain, such that 

the natural embeddings of/' (il) in W*1' (il) are complete­

ly continuous for 0£n-cm. Further suppose that for oc , (*> e 

€ Sw a^ A € lf°(£L) and &.„. =- & nn, * 

(H2) V is a closed, linear subspace of Wsl,2(il), which 

contains Wm,2(il). a: V*.V—•> H , defined by 

a(u,v):= Si / â /x(x)0
otfu(x)i)̂ v(x)dx 

is uniformly, strongly elliptic. 
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Then, assuming (HI) and (H2), a continuous selfadjoint, li~-

near Fredholm operator L: V — > V is defined by: <I.u,v^ 2 ~ 

= a(u,v) for u,veV. 

In dealing with the resonance case, we further suppose: 

(H3) dim(ker(L)>>0. 

Concerning the nonlinear part we make the following hy­

potheses t 
s 

(H4) For oc € Sm g^ : Jl x "K m—*• 1R satisfies 
s 

Carathiodory's conditions, i.e. for each j e TR g^ ( • ,y) 

is measurable in XL , and for x € -ft. (a.e.) g^Cx, • ) is 

continuous. Further the following growth restriction is as— 

sumed. There is at c>0, 6 e £.0,1) and 0 € L(iL), such 

that 

I g o c t ^ y H £ c Si I p r / 3 ( y ) l 0 ' + 8 (x ) 
ip>l£r/nt> ' 

i s sa t i s f ied for each y e IR and I oc / -*• m, and for z e A 

( a . e . ) . 

(H5) For oc c S^ there is a measurable function h^J : 

: i l x S — > T R , w h e r e S := 4y I y e IR m» ly l = 1 ? , and 

Q^ c l F / 1 ^ 6 ' (41) with: I h ^ ( x , y ) I ^ 0 ^ (x) for x € i l 

( a . e . ) and a l l y € S , and: I f ( y n ) n 6 | t e 52** with 

jn—>y and (<p a ) M n € m1* with ? n — * 00 , then for 

a l l oc € S^ and for x e St ( a .e . ) we have: 

We set for v : H—*-K : i l 0 (v ) :=- (x | x e XL , v(x)4-0£ . 

(H6) For all weEer(L) with |w 1 9 = 1 and all oc € S 
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/ « fft^t | m (w) (x) / [ f m (w) (x) | ) | f m (w) (x) l 6 r D^w(x)dx^O, 

and for a t least one oc e Sm the in tegral is s t r i c t l y grea­

t e r than zero. 

(H7) There i s a k e 1R + with k<c inf \ f %\ \fr <s ^ e (L ) J , 

such that 

I g ^ U ^ y . ^ - g o 0 (x , z ,y 2 ) t ** k I y 1 - y 2 I 
S n 

for a l l oc £ Sm9 for x e SI ( a . e . ) , for a l l z e B " and 

a l l y i , y 2 e TR m " m _ 1 . 

If (H4) i s sa t i s f i ed , we define a generalized Dirichlet form 

by: 

n(u,v):= S J^ g c c (x , fm(u)(x))D^v(x)dx for u,v*s¥, 

i.e. the nonlinear part is given in divergence form. It is 

well-known that a continuous operator N: V —> V is given by: 

<Nu sv> m 2
 = n(u,v) for u,veV. 

In the sequel we are concerned with the following boun­

dary value problem: 

Find a solution u of 

® a(u,v) = n(u,v) for all v€¥. 

For a discussion about the type of this problem, we refer to 

[11 and mention only that V = Hr^*2(il) leads to the Mrichlet 

boundary conditions. 

Further, in regard to 1411 we notice that, when the bourn*-

dary of SL is suitablef we can also treat © for a linear 

Dirichlet form: 

A(u,v) = a(u,v) + S J 40,/1(x)B
oc'u(x)B^vCx)<iS, 
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where A ^ e L^O-fl) and dS is defined, as in [12J chap. 

3. 

We obtain the following existence assertion for © : 

Theorem 3: Let (HI) - (H7) be satisfied. 

Then there exists a solution ueV of ® • 

The proof will be given in three steps: 

Lemma 1; Suppose that the assumptions on SL and V in 

(HI) and (H2) are satisfied, and (H4) and (H7) are fulfilled. 

Then N is a k~set-contraction. 

Proof. As mentioned before, we know the continuity of 

N. For cc 6 S we set N ^ by: 

< N<*u,v> m > 2 - J^ goC(x, fm(u)(x))D*v(x)dx. 

If I oo I < m, N^ i s completely continuous. Therefore we are 

done, if N:= i«fl.<?iv Koc -*-8 a k-set-contraction. Let 

2:= L2(H,B m nKL) ana f € Z. The map T : T—>L2(.H), 

defined by - t ^ ^ (u) =- g^ (. f fm_1(u)(« ) ,T)f --S complete­

ly continuous with respect to if i m 2 on V and It II 2
 o n 

L (Jl) , since (HI) ensures the complete continuity of 

ui—• ( f e^ i ^^ tV) f:rom V into (L2(il)) m , and because the 

Kemyckij operator, induced by g^ , is continuous from 
o ®m o 

(L (SI)) into L (!L). Further the uniform equicontinuity 

of the family -l u i-~> ( £• -, (u) ,ip) 1^m j &&& ^he complete 

continuity of each map ui—..• ( ̂  m-it<u)»'Y) iIllPiy that 

Ĉ oc irV«Z * s ^ i -^ 0 1 1 1 ^ equicontinuous on bounded se ts . 

low, let B£Y be bounded and e >• 0. Then there ex­

is ts a finite covering (B1 , . . . ,Bn) of B by subsets of B 

with diam^ 2^Bi^ - T<B-* * €V* *0T 1-6 i-6 n. Further, using 
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the above stated properties of (2^ ^)^^z .» w e 0Di-a--n tov 

i6(l,M.,ni a covering (ci,... ,C"!:) of B. by subsets with 

diam0>2(^T(C^)) A e/2em tor l&p* j ± and .. .y e z. 

Hence we can suppose that the covering (B-j,.«w,3iL) addition­

ally satisfies: 

dia.m 9(T, _ (B.)) £ S/2sm for l .£ i .£n and f e Z, 
o j-. ot̂ ~|r i m 

Then we have: 

II BTu - Nv H o ~ 

= sup \% X [g- (x, f_(u)(x)) -

- S^U, fm(v)(xX)2 D* w(x)ax | = 

=.CT 4=< I >£~LZ*- (x» w » > « . i-.i«) <*» -
~ g<* (x» f m - l ( v ) ( x ) > / t m

( v ) ( x ) ) J DoC^(x)dx| , 

where ^ m ( u ) (x) := ( D ^ u t x ) ) ^ , ^ ^ . Then we,obtain: 

^-%i*,2*r^^ S- . L &> ««<«.?-*.!<«)<»). 
l m (u ) (x ) ) - g<j(. (x, f m _ 1 (v ) (x) , ^ m (v ) (x ) | lD«w(x) I d x ] * 

*ZPi H , H ^ C i l s - ( X ) ' f - l ( U ) ( X ) ' ^ (U) (X) )" 
- g0C(x> f m - 1 ( u ) ( x ) , ^ m (v ) (x ) ) I i D S ( x ) I dx + 

+ 4 1 ^ ( * » . f m - l ( u > ( x ) » % n ( v ) ( x ) ) - Soc ( x >fm- l ( v ) ( x ) > 

^ m (v ) (x ) ) l I D*w(x) I dx ] £ 

- f?u*\ , iJ^,m, C k L U m(u) (x) ~ ^ m ( v ) (x) ' • llotrtl rr*^ \oc\xm, 'JL •"«- m 

j D * w ( x ) I dx + J ^ I g ^ (x, f m^ 1 (u)(x) , u m
( v ) ( x ) ) -
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- ««..(-"» fm- l ( v ) ( x ) » ^ m (v) (x) ) | |-B«-iirûc>laxl 

- ^Zm
( v ) ( x ) l 2 й x ì 1 / 2 - L ' D o C w ( x ) l 2 a x 3 1 / 2 + 

+ S i „.< iS.* L 4 ' 8* U' f-i(u)(x)' V*><»» -
- g ^ U t f m - l ( v ^ > > ^ f f i(v)(x)) | 2 d x 3 1 / 2 T 4 1 D^w(x)l2cbc31 / | 

^ kll u - v ltm>2, + (sm - s m - 1 ) e / 2 s m ^ k ^ ( B ) + e / 2 + s / 2 . 

Hence dia.% 2 (N(B i))A k T(B> * £ for 1-6 i £ n and e > 0, 

therefore , T ( N ( B ) H k f ( B ) . 

I^maa_2: Let (HI) - (H6) be s a t i s f i e d . Then the following 

asser t ion holds : For each bounded subset W of R(L), there ex­

i s t s a t Q > O w i t h : < N(twf + t ^ z ) , w> > 0 , for a l l t > t Q , 

a l l z£W, and a l l wcKer(L) with II w l 2 = 1. 

Proof* Otherwise there ex is t s aW£R(L) , ("^rielN c 

e ( K f | { 0 ) ) * , (w n ) l l € | l e Ker(L)11 and (vn>n g W £ W* , 

sat isfying ¥ i s bounded, t —> 00 , II wn II 2 = 1 for m fi W 

and: 

, JL i g~(*' ^ ( tA + ^n)(x)lD*-,n(x)dx*0. 

By going if necessary to subsequences, we can assume: 

There is w€ Ker(L) with: II w n - w II m 2 —> 0, 

I wn + ^ \ n - w I a £ — * 0, V* wn(x) —*> D
ocw(x) for x <£ -H-

(a.e) and each «s € Sm, and D
O CWL(X) + if " ^ ^ ^ ( x ) -

111 XX JQ. XX 

•- D^w(a)—> 0 for x e -0. (a.e.) and oc e Sm. Now let oc e 

m 
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^ J.O. « - ( x ' f m ( V a

 + Vп)(x))D*wn(x)đx = 

• *£* 4«*(*> -УVn + tnvn)(x))D*w.(x)đx + 
+ < 4. *«(x' f Л ł

a
 + í T n ) W 1 -»*v x ) -

- D^wtx)] dx =: I n + I I n 

We claim: lim 11^ = 0. 
m. ~> <*> - 1 

"[iv * - k<s~ (*. w v n + 4 v(x»> 2^1/z-
. H D - w n - D - w l l 0 j 2 . 

Since llDot;wn - D ^ w l 0 2 — ^ °> w e are. done, i f the integral 

i s bounded • Using the growth condition in (H4), we f ind: 

L Un «« (x' ?m( Vn + 4 V (x) > ' 2dx * 
« /„ Cc , -S l l ^ w + t ? " V ) U ) > I + C f e (x) J 2dx « ^Ji ipi=/m- n. n n n 

* 2c2a r a 2 / I D l* (» + < " 1 v ) ( x ) ! 2 f f dx + m.|(il«vm. "^- n n n v 

+ 2 t ; 2 6 r ii e n I ? *4c 2 s m i i , B + £* v„ii2
 2 + 2tn

4ffli e || ^ + 
n 0,2 m n n« n m,c n o,^ 

+ 2sm meas (XL)» 

Since (wn + t " vn^n£lN **-s a " "m 2 c o n v e r S e n * f c sequence, 

the boimdedjjiS3 i s proved. 

We have for I : 

Jn " £ * A 0<Ur) S«; (x> S m ' V * + < vn)<x))D«*wtx)dx. 

Since D^w^Cx) + t ^ DeCvn(x)—** D^wCx) a . e . in XL t we 

find for almost each x e H0(D
<x:w) an nQ(x) e IN with: 

D^wJx) + tf"*4 D ^ v C x ^ O for n > n n ( x ) . n n n * o 
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„r-1 Hence \ f '(w^ + t v ) (x) \ ;> 0 for almost every x € 

e i l (D^w) and a l l n2rn„(x) . Thus lim I f j t w + o o <*x-»--© •> n n n 

<5 
(H5) implies for almost each x £ H (D^w): 

+ t n vn5(x) = co holds in i IQ(D*(w)) a . e . . Therefore 

<&*£?* ^ g ~ U ' ^m ( tnwn + *n V ( x » = 

= h « ( x » f m ( w ) ( x V ' ? m C w ) ( x ) l ) • ' • ? m^Hx) ! 6 " . 

(For n 2 n 0 ( x ) choose y n = f ^ t ^ + t j v&) (x) / I f ffl(tnwn + 

+ t n v n ) ( x ) | and p n - I f m ( t nw n + t n v n ) (x) I .) Now © and 

the boundedness of ( t ^ &gC (• , f m ( V n + *n V ^ ' n e N i n 

Ir(JL) involve the weak convergence of (t^3* g ^ (• , f m(tnwn+ 

+ t S V » n * M t o h c c ( - ,fnM/\fmM\ )• I f ^ w ) ^ in 
L2(Jlo(D0Cw)). Hence 

i ^ ^ n = 4 h « ( x > f m
( w ) W / I ? m(w)(x)l ) 1 fm(w)(x)l6 ' . 

jD^wCxXdx. 

Then (H6> implies: v 

',££, l ^ k * - ^ *« ( x ' faCVn+ < V(x>^°Cwn(x>dx>°. 
which i s a contradict ion. 

Now we can prove Theo rem 3 : 

Proof to Theorem 3 : "We rea l ize the hypotheses of Theo­

rem 1 for X = X = (¥, I t 2 ) and for the above defined L 

and 1. Since L i s a self adjoint Fredholm operator, R(D i s 

equal to Ker(L) *• Hence we can take the orthogonal p r o j e c ­

tor on Ker(L) to be P and Qf and J to be the ident i ty of 

Ker(L). me condition MN is a k-set-contraction with k-c l (L) M 

328 



fo l lows by Lemma 1 , Theorem 2 and assumption (H7)< 

V/e d e r i v e the hypotheses (1) - (3)# 

( 1 ) : Let u - V a n d 0 > 0 . 

HNuU ~ = s u p A J S g ^ (x, f m ( u ) ( x ) ) D a c : v ( x ) d x | 

_ sup , , - S Cf I g_. (x , £ (u) ( x ) ) | 2 . x _ 1 / 2 

II D * v l l 0 ) 2 

- s u p - 1 - _ ( c \ D< 3 u(x ) | 6 ' + 
k L , ^ •Q-l/ai-i-

+ e ( x ) ) 2 a x J 1 / 2 . , 3S I I D ^ V I L ? 
Ixl_-»>i o*^ 

it2c2 J_. ( „£-«, ' - ' » w l ^ * 2 »e "o.a^2 

*&**•» ,P^Jk l D / 3 u ( x ) | 2 f f d^1 / 2 + ^ 0 « o , 2 
_ ,/__ ^ r u i * f 2 + v^ie«0 j2 _ ,-itu f >2 - > . * , 

where <5. , & a r e s u i t a b l e c o n s t a n t s , and "c s a t i s f i e s : 

HI 9? Ill A c ll<3p(l0j2g f o r each cp £ L 2 ( I 1 ) . Here III i 

means t h e quas ino ra , g iven by IM cp III :« ( f | g?(x) | fx ) ^ , 
p 

which i s weaker on L ( I I ) than II IK D . Now the boundedness 
o, < 

of t he pseudo- inverse &*> ensures t liu 1 ^ _ __ <«4 u 1 ~ + ^ 
r -af2 v m,«_ 

f o r s u i t a b l e - <a , V and # £ t 0 ,1) ( the c a s e <s = Q i s obvi­

o u s ) , where N = L , - ( I - Q)e N. 

( 2 ) : Let W be a bounded subse t of R(L), t hen , us ing 

__eirm_a 2 , the re e x i s t s a t _ _ 0 w i t h : 
( # ) < N(tw + t5v,w > > 0 fo r t > r t 0 , w ^ K e r ( L ) , II w I 2 = 1 

and v e W. « « - * * ' 

T h i s impl ies Q-»N(tw + # v ) + 0 f o r tZ^Qi w€Ker (L ) , 
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I w \\m 0 = 1 and veW. 

(3) : Set v = 0 in ( * ) , then <QoN(tw), tw > = 

= t < N ( t w ) , w > > 0 for t £ t Q . Therefore the Poincare-Bohl 

theorem implies: . . 

deg (die Qo N | Ker (L) , 4w I we iCer (L) , II w II m 2-< t>,0)4-0. 

Now Theorem 1 yields: There is ueV with: Lu - Nu = 0 , which 

implies: a(u,v) = n(u,v) for all ve V. 

4. Here we will make a few notes on Theorem 3: 

Concerning the liiBar part we only mention: 

.Remark 1: The spectrum of L must be determined with 

respect to V, i.e. we have to consider an equation of the 

form: 

23. f a&A (x)B°
<ru(x)B^T(x)dx =A % 'L D0Cu(x)lfSt(x)dx 

for v£Y. In regard to (HI) and (H2) we can suppose without 

loss of generality: a^^ = 0 for loci + i /J 1 ̂  2m. 

If we consider the Laplacian for example, i.e. 

< d u , T > m > 2 = AJfcn 4 D1u(x)DXY(x)dx, 

we obtain ^ ( A ) =4.11 , hence J2(A ) - 1. 

Assumptions, analogous to (H4)r - (H6), appear in [ 3 1 . 

Befaark 21 One ofeserrea that the choice of 6 i s u n i ­

que, because i t dlependls not only on the growth condition i n 

(H4), but also on (H5) - (H6)» Instead of ® we can cons i ­

der; 
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(XX) a(u,v) = n(u,v) + <f,v > 0 for veV, 
0,«£ 

2* ' 
where f is given f u n c t i o n , of L ( H ) , by setting gQ = gQ + f. 
If 6" ;> 0, we obtain: 

Corollary; Let (HI) - (H7) be satisfied and 5 > 0. 
2' For f € L (H*) there exists a solution ue V of ( x x ) . 

We end with some special cases: 

Remark 3: If g^ depends only.on x arid the oc-th de­

rivative (we write then g^ (x,DoCu(x))), the conditions (H5) 

and (H6) are reduced to: 

(H5)' There exists functions h^ e h /1~6r and 

h~ e L?/l-6* with, • • 

11т _ %>еС0(х,у)/ I у I = Ь~ (х) :Гог х б Ц (а.е.). 

(H6)' For a l l w£Ker(L) with l lwl m 2 = 1 and a l l cc 6 

€ S т „ 

m 

J ht , (x) I Docw(x) | 1 + f f "dx - f •„ , h" (x) ) D * w ( x ) l 1 + ^ 0 , 
il^/ur) .-aJ2>°W) <* 

where II
 +
 (D

oc
w):=-Cxl x e D- , D^wte) > 0 > , and at least 

(I) . (-c) 

for one «c € S the integral is strictly greater than zero. 

Remark 4: If V « W^,2(II) and 6 = 0, Theorem 3 is a 

generalization of the Landesmann Lazer result (e.g. £10], 

[173). When we consider equation (XX ) (see Remark 2), we 

receive the following condition for loci = 0 in (H6): 

f f (x)w(x)dx £ J h(x, f ^ u X x ) / l£ Cu)(x)l)w(x)dx. JSL Ji; Our) °- Ttt T m 
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Remark 5: To prove Theorem 3.2 in 143 for the quasi-

linear case, we need the assertion of Corollary VI.6 in 

[11] for set-contractions, which can be derived in the sa­

me manner from Theorem 1 as the just mentioned Corollary 

from Theorem VI.4 there. We omit details. 

Remark 6: Instead of Theorem 1 we can use a theorem, 

for set-contractions, corresponding to Theorem 1 in [2], to 

prove Theorem 3. 
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