Previous |  Up |  Next

Article

References:
[1] P. M. ANSELONE: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, 1971. MR 0443383 | Zbl 0228.47001
[2] P. M. ANSELONE: Collectively compact and totally bounded sets of linear operators. J. Math. Mech. 17 (1968), 613-622. MR 0233231 | Zbl 0159.43003
[3] P. M. ANSELONE: Compactness properties of sets of operators and their adjoints. Math. Z. 113 (1970), 233-236. MR 0261397
[4] P. M. ANSELONE R. H. MOORE: Approximate solutions of integral and operator equations. J. Math. Anal. Appl. 9 (1964), 268-277. MR 0184448
[5] P. M. ANSELONE T. W. PALMER: Collectively compact sets of linear operators. Pac. J. Math. 25 (1968), 417-422. MR 0227806
[6] P. M. ANSELONE T. W. PALMER: Spectral analysis of collectively compact strongly convergent operator sequences. Pac. J. Math. 25 (1968), 423-431. MR 0227807
[7] J. W. DANIEL: Collectively compact sets of gradient mappings. Indag. Math. 30 (1968), 270-279. MR 0236758 | Zbl 0157.45901
[8] J. D. De PREE J. A. HIGGINS: Collectively compact sets of linear operators. Math. Z. 115 (1970), 366-370. MR 0264425
[9] M. V. DESHPANDE N. E. JOSHI: Collectively compact and semi-compact sets of linear operators in topological vector spaces. Pac. J. Math. 43 (1972), 317-326. MR 0324476
[10] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex Functions and Orlicz Spaces. Moscow, 1958 (Russian).
[11] J. LLOYD: Differentiable mappings on topological vector spaces. Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. MR 0333724 | Zbl 0274.46033
[12] R. H. MOORE: Differentiability and convergence of compact nonlinear operators. J. Math. Anal. Appl. 16 (1966), 65-72. MR 0196549
[13] K. J. PALMER: On the complete continuity of differentiate mappings. J. Austr. Math. Soc. 9 (1969), 441-444. MR 0243393
[14] M. VAINBERG: Variational Methods for the Study of Nonlinear Operators. Moscow, 1956 (Russian).
[15] V. I. AVERBUKH O. G. SMOLYANOV: The theory of differentiation in linear topological spaces. Usp. Mat. Nauk 22 (1967), 201-258 (Russian).
[16] V. I. AVERBUKH O. G. SMOLYANOV: The various definitions of the derivative in linear topological spaces. Usp. Mat. Nauk 23 (1968), 67-113 (Russian).
[17] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... . in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. MR 0276840
Partner of
EuDML logo