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COMMENT ATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON COLLECTIVE COMPACTNESS OF DERIVATIVES

Ji¥{ DURDIL, Praha

Abstract: F being a family of mappings in locally con-
vex spaces and F’ being the family of their derivatives,
the necessary and sufficient conditions for F under which
P’ 1is collectively precompact, are given.

X ords: Locally convex space, Gatesux and Fréchet
derivat%ves, strong equicontinuity, collective precompact-
ness, Orlicz space.

AMS: 58C20 Ref. Z.: T7.978.44

The concept of collective eompactness is a natural gene-
ralization of the notion of compactness: for single mappings.
It was introduced by Anselone and Moore in [4] and then stu-
died in detail by various authors in [1] - [3],[5] - [ 9],
[111, [12]1. A great deal of those papers is devoted to the
collective compactness of a family of linear operators in Ba—
nach spaces because of its important applications in the theo-
ry of approximate solutions of operator equations. Neverthe-~
less, the more general relations, concerning the concept of
collective compactness, were also studied. For instance,
Lloyd investigated in [11] the connections between collective
precompactness of a family of nonlinear mappings in topologi-
cal linear spaces and collective precompactness of the family

of derivatives of those mappings.
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The aim of our paper is to establish an analogy of the
well-known theorem of Palmer [13] (on complete continuity
of the derivative of s mapping in Banach spaces) for fami-
lies of mappings in topological linear spaces. That means,
we will find necessary and sufficient conditions for a far
mily of nonlinear mappings under which the family of deriva=~
tives of those mappings will be collectively precompact.
Thus, some of our results complete partly the results of
Lloyd [11); namely, this concerns our Theorem 2.2 generali-
zing Theorem 3.11 of [1l1). Our main results are presented in
Theorems 2.4, 4.4, 4.5 and 5.1.

l. Notations and definitions. Throughout the paper, X
and Y will denote arbitrary locally convex topological 1li-
near spaces over the real field R ,4% and 7 will deno-
te the collections of all neighbourhoods of O in X and
Y , respectively, ’uo and ’V’o will denote the collections
of all open convex balanced neighbourhoods of O in X and
Y , respectively and X* and YX* will denote the topologi-
cal duals of X and Y. M will denote an arbitrary open
convex subset of X eand R and B, will denote the col-
lections of sall bounded subsets of X and M , respective-
ly. We will denote by & (X,Y) the space of all continuous
linear mappings from X into Y with the topology of uni=-
form convergence on bounded subsets of X , and by ¥ the
base of neighbourhoods of O in & (X,Y) consisting of all
sets of the type (B,V) ={u € £(X,¥): u(B)cV3} where
Be®Hh and Ve V.



Let ¥ be a family of mappings from M into Y . This
family is said to be weakly (resp., strongly) equicontinu-
ous [11) on M iff for each x € M and each bounded net
(x, : 2 € L)cM (i.e., L 1s a directed set and the set
ix, Ae L} is bounded), weak convergence X —= X, imp—-
lies f(x)-——*f(xo) (resp., £(x)—> f(xo)) uniformly over
f €% . The Pamily ¥ is said to be uniformly weakly
(resp., strongly) equicontinuous on NcM iff for sny boun-
ded nets (xa_: Ael), (x’xz A € L)cN , weak convergen—
ce xa-xa—-no implies f£(x,) - f(x’y)—0 (resp.,
f(xn) - £(x%)—>0 ) uniformly over fe & .

‘I;he family 3° 1is said to be collectively precompact
{11] on M iff for each B € B, , the set {f(x): xeB ,

f € % is precompact in Y . (Recall that precompactness
is equivalent to relative compactness in complete spaces.)
Similarly, the family #' of derivatives ?’ (see below) of
mappings from % 1is colleectively precompact on M iff for
each B € .’BM , the set {£’(x): xeB, f € 3¢ is precom=
pact in &£ (X,Y) . The family %’ of derivatives is said
to be collectively jointly precompact [11] on M iff for
each B) € By, and By € B , the set {£(x)h: xeBy,
heBy,, f€ F} 1is precompact in Y.

We use the following concept of differentiability which
is due to Averbukh and Smolyanov [15),[16] (see also [1l]).
A mapping f: M—>Y is said to be GAteaux (resp., Fréchet)
differentiable at xe&M , iff there exists wu € &£(X,Y) such
that for each heX (resp., B € B3 ) and V ¢ 9 , there
exists dJ° > O such that




£(x + th) = £(x) - ulth)e tv

whenever |t | & o (resp., whenever heB and |t | <« o*);
such a mapping u is denoted by f'(x) . A mapping f: M—»
—>1Y is said to be Gateaux (resp., Fréchet) differentiable
on NcM iff it is Gateaux (resp., Fréchet) differentiable

at every x € N. & mapping £: M—> Y is said to be uniform
differentiable on Nc M iff it is Fréchet differentiable at
every xe N , and, given Be B and Ve 7 , the >0

in the definition above can be chosen independently of =x €
eEN.

For a differentiable mapping f: M—> Y , the notation
@,olx,h,t) = £(x + th) - £(x) - £’(x)(th)

(xe M, he X, teR) will be used throughout this paper.

A family 5 of mappings from M into Y 1s said to
be GAteaux (resps, Fréchet) equidifferentiable at xe M , iff
each fe ¥ ‘18 CAtesux (resp., Fréchet) differentiable at
x , and given héeéX (resp., B€ B ) and Ve ¥ , the >
>0 in the definition above can be chosen independently
of £ &% . The equidifferentiability and the uniform equi=-
differentiability of § on NcM 1is defined in an evident
waye.

Throughout the paper, for & given family F of mapp~
ings, the following notations are used for point sets and
families of mappings induced by F :

F(x) =4tx): 2 eF}, 3 =4r':teF?,
Fx) =4t (x): £ eF? , & (M =4{r(x): xeN,re 37 ,

- 10 -



and similar ones.

We remark that it must be distinguished between precompact-
ness of F’(x) (as a subset of & (X,Y)) and collective
precompactness of 7 ’(x) (as a family of mappings from X
into Y ); see [1] for detail discussion in that direction
(for instance, both concepts are equivalent for compact self-

adjoint operators in a Hilbert space).

2. Necessary conditions. Throughout this section, F
will denote a family of G8teaux differentiable mappings from
McX dinto Y.

Our first assertion (and its proof, too) is a slight
modification of ([11], Theorem 3.8).

Theorem 2.1. Let the family %’ be collectively pre~
compact on M . Then the family & is weakly equicontinuous
on M uniformly on each bounded subset of M .

Proof. Suppose F 1is not uniformly weakly equiconti-
nuous on & set N € By . Then there exist nets (x,:
:Ae L), (xp: Ae LcN, (£, A ellcF , aconti-
nucus linear functional e*e€ Y* and € > 0 such that

x'a-xh-—é-o ( A€ L) and that

for all A € L . According to the well-known mean value theo-

rem, for every A € L , there exists t, € (0,1) such that
’ - ’ ' _
<fa(xa)-fa(xa),e*) --(‘t‘ﬂ(x:,\-»t.,L(xJL x,)) .
. (x;"' xa'), e* > .
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Set 1z, = 1’;" (xz +t, (‘.x‘;‘ - x, )) and let Ve ? be such

that |(y,e*>| < % ¢ vwhenever yeV . Demoting by B the
balance hull of the set {x_',_ -%x,: A€ L} , the set

3’ ((N+ B)AM) is precompact in & (X,Y) and so we can
choose a subnet (z,: A € L’) of (zo: A € L) such
that Zp, = Za, € (B,V) for each A,;,A,e L1’ . Similarly
as in the proof of (L1111, Th. 3.8), we can now prove that
1< £ (x%) =25 (xy),e¥>12 e foreach Ael’,
which contradicts (1).

The following theorem improves the result of ({111,
Th. 3.11).

Theorem 2,2. Let the family F’ be collectively
Jjointly precompact on M &and let the set 9 (xO) be pre-
compact . in Y <for some x € M . Then the fanily F is
collectively precompact on M . _

Proof. Suppose there exists N ¢ ?BM such that
% (K) is not precompact; that means there are nets
(fa': Aellc ¥ , (xa‘: 2 € L)c N and a neighbour—
hood V € 4" such that

() f31 (xzﬂ) = fa, (x"-z )&V

for all Aj,A,€L . Let We V, Dbe such that 4 WcV
According to the mean value theorem ({11], Th.1.6)

T, (x,) = £, (x)e 'e'ﬁ{f",b(xo + ggxa- xo)) (xz- x):

0o
:tef0,1]%

for each A € L , where ©0 denotes the closed convex



hull. Hence, for every A € L , there is -ia; :tel[0,1]13c

c [0,1] end r.EW such that
_ t ) - .
(3) t, (x,) = £, (x,) ', 62[‘0,43 a, £ (x, + 1;(x‘QL x,))

-(xx- x,) + Ty s
t t
where ?éo'u a, =1 and only a finite number of a, (for
each fixed A ) is non-zero.
Denote by B the balance hull of {x, - t 3 AMe Li;
it is Be ® and x°+t(xa-x°)e(xo+B)nM eﬁn for

all A€ L and te€(0,1] . Hence, denoting

t

¥, = f‘;' (xy + tlxy = x)) (x, = x) ,

(o]

the set 43& tAe L, tel0,11% 4is precompact, and its

convex hull C is then precompact by the well-=known theorem,

t ot
too. The net <t§°,ﬂaa Yy, 2 € L) llesin C and so

t t . P
there exists some Cauchy subnet <t¢zkw ay ¥y A el

Hence, there is A’ € L' such that

(4) SIS S S

a ¥ a y. €W
t €01 Y1 M4 teL0,41 %3 "X

for all ﬂ,l,lgeL’ whenever 7!,1,.12,8-.2.' .

By the assumption of our theorem, we can choose a Cauchy
subnet (£, (x,): A € L) of the net (£, (x): 2 e L")
amd hence, there is A" e L such that A” & A’ and

(5) fa, () = 2 (x)e
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for all 2,,2,€L” , A,,A, & A" . It follows now
from (3),(4),(5) that. for all 2;,A,eLl” ,

T, (an ) - fo“z (xaz) = [fa,, (xo) - f‘”z (xo)] + ra4 -

1

t t
-r, * [ = %4% -

= eit b v
2 t €00,1] 4 t €L0,4] ‘a'z yﬁg e

whenever A, »”-2 & , which contradicts (2).

The following theorem extends the well-known result
concerning a single mapping (see e.g. [14)), to the case of
8 fanily of mappings. ’

Theorem 2,3, Let F be weakly equicontinuous on M
(reap., uniformly weakly equicontinuous on each bounded
subset of M ). If & is collectively precompact on M
then it is strongly equicontinuous on M (resp., uniform=-
ly strongly equicontinmuous on each bounded subset of M ).

Proof. Suppose & is uniformly weakly equicontinu-
ous on each bounded subeét of M and is not uniformly
strongly equicontinuous on some N é.’ﬁn ; then there are
nets (x,: A€ L), (x; : Q€ LIcN , (£, :2e Llc &
and V€7 such that x, - x;’—a-o (A e L) and

(6) £y (xy) -t (xi)é?
for every A € L . Moreover,
(7) (£lx,) - f(x:,_), e*>—>o0 (A e L)

holds for all f € 8 and e¥e ¥¥,
Choose arbitrary Cauchy subnets (fa’ (xa’): Ae L’)
and (fa(x’a‘): A e L') of nets (fa(x:&):&eL) and
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(fa (x’z ): Ael ) , respectively. Denoting by Y the comple-
tion of Y (such a complete Hsusdorff space that Y is

dense in Y and the topology of Y induced from ¥ is equi~
valent to the original one; ¥ 1s also locally convex), the=

re are yo,y; e ¥ such that

(8) £, (x, )y, 5 T, (x:,b)—e Yo (Ae L")

in the topology of 54 - Hence,

9 <r,(x,) -fﬂ(x;'),’é"‘)-———>< Yo = F¥*
(2re1')

~
for every T* e Y*.

Since the restriction of an arbitrary &*e Y* is en.

element ¢ Y* , it follows from (7) that

(10) < £, (x,) - fa_(x:,‘),’e'*> —> 0 (ael).

Thus, we obtain from (9) and (10) that < y, = ¥,,8*%) =

=0 for every ¢*

by (8),

e T* and 8o yo-y;=0g:=OY » Whence

£a(x,) =£,(x)—>0 (re L)

in the topology of Y and hence in that of Y , too.

This contradicts (6) and so proves the "uniforn" patt
of our theorem; the "simple" part can be proved in a simi-
lar way.

Now, we are ready to present the main result of this

gection:
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Theorem 2.4. Let the family 3’ be collectively me-
compact on M , the mapping f£’(x) be mecompact for every
Pe® 9nd xe¥ and let the set 3’(:0) be precompact for
some x € M . Then the family ¥ is collectively precompact
on M and uniformly strongly equicontinuous on each bounded
subset of M .

Proof. By ([11), Th. 3.10), the family %’ is collec-
tively jointly precompact on M ., Hence, the result follows
from Theorems 2.1, 2.2 and 2.3.

3. The property € . Throughout this section, ¥ will
be an arbitrary family of mappings from M into Y .

Definition 3.1. The family F possesses the property
€ at some point x €M iff the following condition holds:
For every net (f, : A €l)c ¥ , asubnet (£, : 2 e L%)
can be chosen in such manner that, given arbitrary B € 33
and V ¢ 7 , there exist rpy>0 such that x, + rpBc ¥
end for every o°, O < d'“rgy , there is 2, ¢ L’ such that

(11) faq (xo +h) - f,_z (xo +h)ed VvV

for each A;,A,el’ , A;, 2, & Ay ond each he B .
It is evident that if § possesses the property € at
x €M then the set 3’(:0) is precompact in Y . Two folio-
wing theorems will make the meaning of the property  more
clear.
Theorem Je.l. Let x ¢M and suppose that every net
in 4 contains a subnet that is uniformly Cauchy on some
neighbourhood of x, , i.e. there exists U & % such that
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for every given V € 7 , an index Ay, can be chosen such
that £ (x) - faa(x)e V holds for all 2A,,2, + Ay
and all xex, + U . Then # possesses the property € at
S

Proof. Let the condition of Theorem 3.1 hold and let
(fa: A€ L)c F Dbe an arbitrary net. Choose a submnet
(£t 2€ L’) and U ¢ U as described in the theorem
above and such that x +UcM . let Be B and Ve 7
be arbitrary and choose er>0 8o that rBWBcU « Given
any o, 0< "€ rpy , the formula (11) evidently holds for
“all hedB and all al,.ﬂ.zeL’ , 11,&2 é-.Zv, where
v = ov.

Remarke The condition of Theorem 3.1 implies 3 is
collectively precompact on some neighbourhood of X, *

Proposition 3.1. Let 3  be Fréchet equidifferentiable
at a point x €M . Then % possesses the property € at
x, 1if and only if both sets 3'(:0) and f’(xo) are pre-~
compact in Y and & (X,Y) , respectively.

Proof. 1) Suppose &F 1is equidifferentiable and pos-

gsesses the property € at x_ . Precompactness of 3"(:0)

o
in Y is a direct consequence of Definition 3.1 and so it
remains to prove precompactness of %’ (xo) only.

Let (fa (x ): A € L) be an arbitrary net, (£, :
¢ X € L) be the corresponding net in F and let (£, :
: 3.€ L') be its subnet chosen according to Definition 3.1.
We will prove that the corresponding subnet (f;" (x): A €

&€L') of (fé (x,): A € L) 1s Cauchy in &L (x,Y) .
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Let an arbitrary (B,V) e ¥ be given, let W e A
be such that 4 WcV ., There exists d"o such that 0<
< Jo<Tpy (the number from Definition 3.1) and that

W, (x,,h,t) e tw

whenever |t | £ &y, heB and 2 e L', By the definition
of the property C again, there is A€ L’ such that
o

for every A;,A,el’, A,;,A4, & ﬂd; and each heB ,

it holds

) =31 -

+ tai(xo) - f.?t,, (x,) + a)fa” (xg5hy o) - wfaz (xysh,

)le LI ows Jws d W+ swlcv,

Rl

s - P
whence fa_4(x°) fnz (x,) € (B,V) follows.

2) Suppose ¥ is squidifferentiable at x, and the
sets & (x,) and 5"'(:0) are precompact; we will prove
that % has the property C at X, .

For an erbitrary net (£, : Ae L) in ¥ , there ex-
ists a subnet (f, : A€ L’) such that the corresponding
nets (£, (x): A e L’) and (f£) (x): 2 e L') are Cau-
chy nets.

Let Be Jd and VeV be arbitrary and let W e Y,
be such that 4 WcV . Choose rBWe(O,l) so that x +
+ rpyBCc M and

cofx(xo,h,t)e tw

- 18 -



whenever |t £rgy , heB and Ael’,
Given eny ', 0 < d«rgy » there is A, € L’ such
that '

£, (x) = 23, (x,) e W

L H 1
fa,, (xo) fa,_ (xo) € (B,w)
for every A,, A,el’, 2A,,15 & A . It follows now

that for all such '7"1”12 and all h € o'B,
fa, (Fo+ 1) =ty (x, + ) =15 (x,+ &x) -
=%, (Xo * ) =1ty (x)) =Ty, (x)I +
’[fa:,, x)) - fil(‘xo)J (FK) + @, (x,k o) =

A4

- W, (x,,k,d)e4 S¥c IV

fa’i
(where k = iheB) holds.

Fréchet equidifferentiability of & st X, and boun-
dedness of the set ¥’ (x)) in & (X,Y) imply equiconti-
mity of ¥ at x, if the space X is bornological (see
[11 and [15]). Hence, the following consequence of our pro-
position holds:

Corollary 3.1. Let X be bornological. Let ¥ be
Fréchet equidifferentiable at X, € M s&and possess the pro-

perty € at X, - Then F 1s equicontinuous at X, *
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4. Sufficient conditiops. In the following theorem,
3 1s assumed to be a Pmily of mappings from the closure

¥ of M in X into Y. We suppose the space X dis se-

mireflexive, which means that each bounded subset of X is
relatively weakly compact; if ¥ 1is barrelled then semire-
flexivity is equivalent to reflexivity of X .

Theorem 4.1. Let X be semireflexive, ¥ be strongly
equicontiﬁuoua on ¥ and let the set % (x) be precompact
for each xe€M, where M, is dense in M . Then % is col-
lectively precompact on ¥ .

Proof. Suppose there exist N s.‘Bi such that & (N)
1s not precompact, i.e. there are nets (f; :del) c &
and (x,:AeL)cN and Ve? such that

(12) £, (x’”') - fa, Ssx.».?-g) &V

d‘

for every A, &2eL «Let W e UV, be such that 5 WcV .
Being bounded in X , the set:-txa: A€ L3 is rela=-

tively weakly compact. Being closed and convex, the set M

is weskly closed. Hence, there exists a subnet (x, : & e L”)

of (x,: A eL) and xoefi so that x,—~x (A e L"),

&
which implies f(xa )-—->f(x°) (A e L') uniformly over
f e ¥.

Choose aoeL' so that

(13) f(xa)ef(xo) + W

for all A€ L', A& A, andall feF . Since F is
equicontinuous on ¥ and M_ is dense in N , there is

L ]
X € Mo so that
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(14} f(x;) ef(xo) + W

for every f € § . Finslly, there exists a subnet (1'3_ :
t A€l”) of (f, : A& L) such that

(15) fa, (x) =25, (x) e ¥

for all A,, 2, € L™, It follows now from (13),(14),(15) that
for all A;,2,€ L™ , A,,A, & A,

f, (x, )=?, (x, eV
a, %2, a, Ta, ’

which contradicts (12).

Hereafter, we shall suppose ¥ i1s a family of mappings
that are defined on some neighbourhood M* of ¥ in X and
are Gateaux differentiable on M ; we can suppose that M+ =
=M+ U, where U €U, .

Applying Theorem 4.1 to the family &’ instead of 3
and using Proposition 3.1, the following result can be obtai-
ned. .

Corollary 4,1. Let X be semireflexive and suppose 9~
is equidifferentisble and possesses the property € at each
point of some set Mo dense in M ., If 7' is strongly e~
quicontinuous on M then it 1s collectively precompact on
M.,

Theorem 4,2. Let X be semireflexive and let § be
strongly equicontimuous on M* and uniformly equidifferen-
tiable on each bounded subset of M . Then 7' is strong-
ly equicontimious on .

Proof. Suppse the conditions of Theorem 4.2 hold but

-2] -



g 1s not strongly equicontinuous on M . Then there exist
nets (x, : Ae p)cm and (£, : A e€el)lc ¥ , xoei' and
. Z €X suchthat X, —> X, (Xel), {x,: 2 e L} is
. ‘bounded and

f;_ (x, ) ¢ f‘; (x)) + 2

for all A e L , Let 2 = (B,V) where Be R and Ve 7 ;
then, for every A € L , there is h, € B such that

(16) e, (xy )b, & £ (xdn, +V.

The set {h, : A € L} is bounded, hence it is relati-
vely weakly compact and hence, there is a subnet (h,_ H

:A€L') of (hy:Ae L) and heX such that h,—
—>h, (Aer).
Denote Bo =B u-iho} and let W ¢ ‘l/"o be such that

4 WcV . There exists d"e (0,1) so that JB,cU, (see the
definition of M%) and that

(17} @olx, ,h, ,t)etv, Wplxgyh, ,t) € tW

for each € 3 , A € L'and 1tl< o .
Let A,cL' be such that

(18) f(xa) - r(xo)e 8 |
f(xa' +d'ha’) - f(xo +J'h, e W

for all A el' , A&+ A, and all fe 3 . It follows now
from (17) and (18) that

£, (xa 0 =€) (x)h, =L [£, (x, +dh,) -2, (x, + T n )+
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*f, (xo) =f,(x,) + a)ra (x‘._’,h"L y o) = wfn (xa b,
d)le v

whenever Ae L'y A & A, . Thus, we have a contradiction
to (16).

Theorem 4,3, Let X be bornological. Let § be equi-
continuous on M and Fréchet equidifferentisble at some’
point x € M . Then the family g’ (xo) is equicontinuous
on X .

Broof. Let arbitrary h,e X and ¥V &7 be given,
let W e 7, be such that 2 WcV.

Select an erbitrary Be By end let o e (0,1) be
such that x, + o"BcM and @plx, ,h,t)e tW whenever
|t1£ &, heB and £ e 3 . There exists Ue % 8o
that £(x  + Ulcrix ) +W forall fe€3 . Let Jy ¢
€ (0,d) be so that J Bc U . Then, for every heB ,
ltl & , and fe F , it follows that

£ (x)th = £lx, + th) = £(x,)) - @elx ,h,tleW - tWcV .

Put U ={f;\3‘ [e? (xo)]-l(v) o We have just proved that
Uo absorbs B ; hence, since B was arbitrary, it foll-
ows Uo is a neighbourhood of O .

Equicontinuity of 3”(20) at h, is proved.

Now, the main result of this section can be established:

QBQQL‘.QILM» Let X be semireflexive. Suppose a fa-
mily 3 is strongly equicontinuous on MY, uniformly -equi-
differentiable on each bounded subset of M and possesses
the property € at each point of M, where M, is a den-
se subset of M . Then both families ¥ and ' are col-
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lectively precompact on M and the family #’(x) is col-
lectively preéoupact on X for every xeM .

Proofe Collective precompactness: of 3 follows imme-
diately from Theorem 4.1 and Proposition 3.1, collective
precompactness of &’ follows from Corollary 4.1 and Theorem
4.2, The result concerning %’ (x) follows from collective
precompactness and equidifferentiability of % (see [11],
Th. 3.9).

Remark. It follows from Theorem 4.2 that under the as-
sumptions of Theorem 4.4, the family ¥’ is strongly equi-
continuous on M . If the space X is bornelogical, the fa—-
mly &’(x) is equicontimuous om X for every xeM ac-
cording to Theorem 4.3. ‘

We terminate this section by the following slight modi-
fication of Theorem 2.4 to show the close relation between
our sufficient condition for colleetive precompactness of

%’ (Thexem 4.4) and the necessary one. In fact, Theorem
4.5 below 18 nearly a converse to Theorem 4.4.

Let ¥ be as in Section 2. The assertions of the foll-~
owing theorem immediately follow from Theorem 2.4 and Propo—
sition 3.1.

Theorem 4.5. Let ¥ be Fréchet equidifferentiable on
a set lloc M . Suppose the set 9§ (xo) is precompact in ¥
for some x €M , the family ¥’ is collectively precompact
on M and £’(x) 1is precompact on X for each f € F
and x¢€¢M . Then the family ¥ 1is collectively precompact
and strongly equicontinuous on M uniformly on each boun—
ded subset of M and possesses the property C at each
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'point of lo .

5. Some particular cases. First, we examine the case
of M=X, In this case, Theorem 4.5 is precisely a conver=-
se to Theorem 4.4 and hence, the following equivalence holds:

Theorem 5,1, Let X, ¥ be Hausdorff locally convex
spaces, X be semireflexive, and let 5 ©be a family of map—
pings from X into Y . Suppose the family F is uniformly
equidifferentiable on each bounded convex subset of X . Then
% 1is strongly equicontinuous and possesses the property C
on X if and only if the family F’ is collectively precom—
pact on X , all mappings £’(x) (fe 3 , xeM) are pre—
compact and the set F (x,) 1is precompact in Y for some
x € X.

Remark. It follows from the theorems of the preceding
section that in the theorem above, the statement * 3’ is col~
lectively precompact" can be equivalently replaced by ™ 7’
is strongly equicontinuous".

In the second part of this section, we will investiga~
te the case of normed linear spaces. In such case, the fol=-
lowing property can be introduced:

Definition 5.1, Let X, Y be normed lirear spaces, ¥
be a family of mappings from McX into Y, x,€ M . The
family % is said to possess the property Co at x, iff
the following condition holds: Given any sequence {f }c 3,

g subsequence {fn % can be chosen such that, for every
k

€ > 0, there exists rg> 0 such that any o, 0 < d £
£r. , being given, the inequality
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Dfnk¢x°+h) —fmk(xo-»h)l!é e d”

holds for every he¢X , lhll =0 , and all sufficiently
large ny, o .
Theorem 5.2. Let X, ¥5 ¥, x, be as in the defini-

tion above. Suppose that for every sequence -ifn‘l,c F , the~

re exists a subsequence {fnk% that is uniformly Cauchy on

each sufficiently amall sphere with a centre at ) i.e.
a number r°>0 can be given such that for every ¢ >0 and

r , Ocrer, , there is o such that

I fnk(x) - fmk(x) s ¢

for all xeM, lx-x l=r , whenever m, m 2n... Then
& possesses the property Co at x, .

Proof of this theorem is trivial and can be omitted. We
remark that in contrast to the condition of Theorem 3.1, the
condition of Theorem 5.2 does not imply collective mecom

pactness of ¥ on a neighbourhood of x_. . Moreover, in con-

()
trast to the property € , the property Co at x, does
not imply precompactness of ?(xo) in Y ; nevertheless,
the following assertion holds:

Lepma 5,1. Let X, ¥, 3 »X, be as above. If F is

equicontinuous at x_ and possesses the property C° at

°
that point, then the set ?(xo) is precompact in Y .
Proof. Let -ifn(xo)} be an arbitrary sequence of

points from ?(xo) and denote by ‘(f“k

quence defined by the property Co o We will prove that

(10)3 its subse-—

-{fnk(xo)} is a Cauchy sequence.
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Let € >0 be an arbitrary number and choose r°>0
so that x, + heM and

(19) lex) - 2(x, +m) | £ §

for all £ € % and heX whenever ﬂhlléro . Set =

= min(l,ro,l‘%) where r%: > 0 1is the number defined by

the property €, . Now, it follows by the property C, that
there is n = n%’d, such that

(20) l fnk(xo + h) - mk(xo +n)lle &2

pleo
wie

for all my, m2n, and heX, lhll= J . Choosing an ar-
bitrary hyeX , Ih Il = ¢, it follows from (19) and (20)
that

12, () = 25, )1 £ W2, (xp) - £, Gy + 1)
+ llfnk(xo +h ) - mk(xo +h) I« fmk(xo +h) -
mk(xo) <« ¢

whenever my, by 2 n, , and this completes the proof.
Using the lemma above, the following assertion can be
proved in a similar way as Proposition 3.1l.
Proposition 5.1. Let X, Y, 9, X
% be Fréchet equidifferentiable at x, . Then ¥ is equi-

be as above and let

continuous at X, and possesses the property Co at x

o
if and only if the sets ¥ (x,) and #’(x)) are precom

pact in Y and & (X,Y), respectively.
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Corollary 5.1 Under assumptions Q;yrgopoaition 5e1,
the family & possesses the property L at x, if and on-
ly if it‘ is equicontinuous at x, and possesses the proper-
ty Co at that point.

Corollary 5.2. Let X and Y be normed linear spa-
ces. Then Corollary 4.1 énd Theorems 4.4, 4.5 and 5.1 will
remain true even if we replace everywhere C by Co ®

Note that in the case when X and Y are Banach spa-
ces, M=X and F=4L23} (i.e., ¥ consists of a single
mapping), our Theorem 5.1 reduces to the well-known theorem
of Palmer [13] on compactness of the derivative of a mapp-
ing.

Eventually, we will examine the case of Orlicz spaces
(see e.8.[10] for definitions and notations used below). An
Orlicz space L; is not reflexive in general, however, it
follows from ([10], Th. 14.4) that it is always Ey -refle-
xive, where ¥ is the complementary function to & and
EY is the closure of the set of all bounded functions in
L§, . Thus, all previous assertions will be valid also for
arbitrary Orlicz spaces if we write everywhere E'!E' -weak
(resp., E,!.-strongl equicontinuity instead of ordinary weak
(resp., strong) equicontinuity and others like that.
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