[1] Z. FROLÍK:
A measurable map with analytic domain and metrizable range is quotient. Bull. Amer. Math. Soc. 76 (1970), 1112-1117.
MR 0265539
[2] Z. FROLÍK:
Real-compactness is a Baire measurable property. Bull. Acad. Polon. XIX (1971), 617-621.
MR 0301154
[3] Z. FROLÍK:
Topological methods in measure theory and the theory of measurable spaces. Proc. Third Prague Topological Symposium 1971, Academia, Prague, 1972, 127-139.
MR 0372141
[4] Z. FROLÍK:
Prime filters with CIP. Comment. Math. Univ. Carolinae 13 (1972), 553-575.
MR 0315648
[5] Z. FROLÍK:
Baire sets and uniformities on complete metric spaces. Comment. Math. Univ. Carolinae 13 (1972), 137-147.
MR 0325903
[6] Z. FROLÍK: Complete measurable spaces. To appear.
[7] A. HAGER G. REYNOLDS M. RICE:
Borel-complete topological spaces. Fund. Math. 75 (1972), 135-143.
MR 0309071
[8] R. HANSELL: PhD dissertation, Rochester 1970.
[9] R. HANSELL:
On the non-separable theory of Borel and Souslin sets. Bull. Amer. Math. Soc. 78 (1972), 236-241.
MR 0294138
[10] A. HAYES:
Alexander's theorem for realcompactness. Proc. Cambridge Philos. Soc. 64 (1968), 41-43.
MR 0221472
[11] E. HEWITT:
Linear functionals on spaces of continuous functions. Fund. Math. 37 (1950), 161-18.
MR 0042684 |
Zbl 0040.06401
[12] W. MORAN:
Measures and mappings on topological spaces. Proc. London Math. Soc. (3) 19 (1969), 493-508
Zbl 0186.37201