[1] E. ASPLUND:
Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-48.
MR 0231199 |
Zbl 0162.17501
[2] E. ASPLUND, R. T. ROCKAFELLAR:
Gradient a of convex functions. Trans. Amer. Math. Soc. 139 (1968), 443-467.
MR 0240621
[3] H. CORSON, J. LINDENSTRAUSS:
On weakly compact subsets of Banach spaces. Proc. Amer. Math. Soc. 17 (1966), 407-412.
MR 0199669 |
Zbl 0186.44703
[4] M. M. DAY: Normed spaces. Russian transl., Moscow, 1961.
[7] G. KÖTHE:
Topological Vector Spaces I. Springer-Verlag, New York, 1969.
MR 0248498
[8] J. LINDENSTRAUSS:
On operators which attain their norm. Israel J. Math. 1 (1963), 139-148.
MR 0160094 |
Zbl 0127.06704
[9] J. LINDENSTRAUSS:
Weakly compact sets, their topological properties and Banach spaces they generate. Proc. Symp. Infinite Dim. Topology 1967, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J. (to appear).
MR 0417761
[10] I. SINGES: Cea Mai Buna Approximare in Spatii Vectoriale Normate prin Elements din Subspatii Vectoriale. Bucuresti, 1967.
[11] S. L. TROJANSKI:
On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces. Stadia Math. XXXVII (1971), 173-180.
MR 0306873
[12] V. ZIZLER:
Remarks on extremal structure of convex sets in Banach spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. XIX (1971), 451-455.
MR 0305042