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Commentationee Mathematicae Univeraitatia Carolinae 

13,1 (1972) 

ON EXTREMAL STRUCTURE OF WEAKLY LOCALLY COMPACT CONVEX 

SETS IN BANACH SPACES 

Vaclav ZIZLER, Traha 

The note atrengthena in aome direction the resulta of 

Profeaaor V. Klee concerning the extremal structure of lo­

cally compact convex seta, for the caae of the weak topolo­

gy of real Banach apacee. 

Definition 1. A Banach apace X ia CLltH.) if xn , 

o c e X , liâ Jl m 11*11 m A , 11^+ x II — • 2 imply 

I) a^ - x II —• 0 . X ia (R) if all norm boundary pointa 

of its cloaed unit ball are ita extreme pointa. 

Definition2 (C8J). A point %x of a convex aet C in 

a Banach apace X ia an exposed point of C if there ia 

an f € J* auch that f (y.) <: f (x) , Vn^ e C, of + *x ., 

A point x of a convex C ia a strongly exposed point of 

C if there ia an f e X * auch that f (y,) < i(#) , 

V<%* e C, <$> + ,x , and moreover* whenaver f(Afa)-+•£(<><), tfa,e C9 

then II nfa - # II —> 0 . 

Definition 3. A Banach apace X * haa (W*S) proper­

ty ( (Y*) property) if any <ur* compact convex aubaet of 

X * ia the <ur* cloaed convex hull of ita pointa that are 
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strongly exposed (exposed) by functionala from X . 

Bemark 1. It follows from the results of J. Linden-

strsuss and H.H. Corson (C8J,p.l42, C31,p.410 or C93, Th. 

6.5) that any Banach space X with an equivalent (LUX) 

norm has the property that any weakly compact convex sub­

set of X i* the closed convex hull of its strongly ex­

posed points. 

Together with a very recent ChVLK) -renorming theorem of 

S. Trojanaki [111 for weakly compactly generated Banach 

spaces it means that every weakly compact convex subset of 

an arbitrary Banach space is the closed convex hull of its 

strongly exposed points. Furthermore, E. Asplund proved in 

[l]»p- 46 that for any Banach space X such that there is 

an equivalent norm on X whose dual norm on X4* is (LUX), 

X * haa(W*£> property. 

Similarly, using the results of 11} and 123 , if X has an 

equivalent norm whose dual norm on X* is (K) , then X * 

haa (W*> property (112J, Th.2). 

We will need the following two results of V. Klee: 

Theorem 1 (V. Klee,U3,p. 236). Suppose C ia a lo­

cally compact closed convex subset of a locally convex 

Hausdorff linear space X and C contains no line. Sup­

pose 0 e C and X ia the union of all closed half-

lines which emanate from 0 and lie in C . Than X ad­

mits a continuous linear functional f which ia positive 

on X \ C O ) , For each such f and each real t , the set 

C n f "* C - co , t > is compact. 

Theorem 2 (V. Klee 141fp. 237 or [63, p. 340). Assume 
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C ia a locally compact closed convex subset of a local* 

ly convex Hausdorff linear apace X , C containa no line. 

Then C haa an extreme point. 

Definition 4* A atrongly exposed ray of a convex aet 

C in a Banaoh apace X ia a closed half line H c C 

such that there ia a closed aupporting hyperplane H of 

C such that H r\ C * h, and moreover, whenever 

* ^ (P^^.H) * 0, x ^ e C , io^l bounded, then 

i(k cp C X-, * Jh-) * 0 ., where <p C ̂  , -A ) means the die-

tance of x from the aet A given by the norm of X • 

Remark 2. If H » i * e X •, f C*x) - jr I , i e X * , 

f 4* 0 , it ia easy to see <p C#,H) •» If C#)- 9T l/j| f f 

(see for instance [103,p. 21) and thus for a convex aet C 

in a Banach apace X a closed half line ^ c C is a 

strongly exposed ray of C iff there i a a n £ e X * , f - * 0 , 

and a real f auch that £ Cx) £ y V x c C , 

{ * e X j f(»x) » y ? A C * <to- and moreover, whenever 

fC/i^> —• <f, ^ e C , </ T^J bounded,, then 

?<**. ̂ >~> 0 . 

Furthermore, it ia easy to see that for instance the examp­

le of 18], p.145 of an exposed point of a bounded closed 

convex set which is not strongly exposed can easily produ­

ce an example of an exposed ray of a convex closed weakly 

locally compact set which is not a strongly exposed ray. 

In the aequel, we will use the following notationa: 

Notatione* Let X be a Banach apace, B a X . Then 

- 55 -



air cl S (raapactively <wr*cl S ) .mean the weak (res* 

pectively the weak-star) cloaure of S in X . ci con S 

reap. <ur*tt con, & mean the norm cloaed convex hull reap* 

the weak-star cloaed convex hall of £ in X « 3n£ C 

reap* 3CC) mean the norm interior reap* the norm bounds'* 

ry of C c X . If C ia convex, ext t reap, efcfb C 

reap. vbe^C reap. /tvcfiC reap. hftu^C mean the set 

of all ita extreme pointa reap* expoaed points reap* strong 

ly exposed points reap, the set of all ita expoaad rays 

reap* strongly exposed rays* For a convex C c X*$ s ^ * £ 

reap. ^ efcfi* C reap. ^ ee/t C reap. * fc-€ttf** C mean the 

aet of ail ita pointa that are expoaed by functionala from 

X reap* atrongly expoaed by functionala fram X reap, 

the set of all its exposed rays that ars exposed by func-

tionale from X rasp, the set of all its strongly exposed 

rays that are strongly exposed by functionsla from X • Fur­

thermore , C *> e*&fv C 1 denotes the union of all exposed 

raya of C and so on. 

Hem me may atate our reaults that strengthen in some 

direction the results of V. Kiss (£63, p. 91): 

Theorem 3* Suppose X is a Banach apace, C c X ia 

a elosed convex weakly locally compact that eontaina no 

line* Than if dim, X -» A 

txZ C c * r e i U e * ^ C ) and C » Ucon*'irCC**M4vC)ut>*x,QLp>C'l). 

Theorem 4* A a suae X ia a Banach apace ̂  C ia a 

weakly-star elossd convex weekly-star locally compact in 

X * that contains na lina* Than, if <&*»* X >» 4 
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( i ) If X* haa (Iff*) property„ than ex* C c 

<z<w*tl e ^ C and C» <ur*al eanvCvop^t u f / t a t ^ C J ) , 

( i i ) If X* haa (Vf*S) property, than erf C c; 

cwr*cl ^exfi^C andCaf *r*cte<nvt^C*afc/v CuC*Jt&t{i>#CJ). 

proof. We will prove the part ( i i ) of Theorem 4 . The 

other parte of Theorema 3,4 are proved aiai larly. We follow 

the ideas of the proof of Theorem 2.3 of V. Klee (L6],p. 91), 

only with soma changes and additional considerations. 

Take a ^ c oxt C (see Theorem 2) . Let X. be the union 

of a l l closed half l ines in C which emanate from Jfi .Sup­

pose K 4* 0 9 ainca otherwise K i s <wr* compact, by the 

reault of V. Klee (see for instsnce C7J,p. 340). Using Theo­

rem 1, take an f e X , auch that f Cx> > f6fi*> Vx € K , 

^ 4 / j v , and auch that Y i real , C A f "V- oo 9 t > ia 

/ur# compact. Choose an arbitrary <f >• f C^) . Then C A 

A f "^ C- so, gT-h 4 > ia tir* -compact and therefore ia the 

<ux* closed convex hull of those of i t s points that are 

strongly exposed by functionala from X 9 by our hypotheses. 

Thus, by the Milaan'a theorem ([7-1, P- 332), 

^tc <ur*al kexfu^LC A f ^ C - c o , <f + 4 > ) . Therefore, for 

an arbitrary <ui* -neighborhood V of ^ , there ia a point 

zfy of the set V A C A f** C- oo f <f + 4 > which i s 

a strongly exposed point of C A £~*C- <*?, y -4- 4 > by some 

9- € X and auch that f C/fy) < f • 

To aee fi^ i s a strongly exposed point of C by $~e 

e X , i t suffices to show %-Cx) £ ty(fy) Vx € C 

and whenever 9-Cx^) —> ^Cfy >, x,* fi C , / » » ^ 1 ^ * " > 

then II x ^ - ^ H - > 0 . Let H « C r\ i ~* C <f + 4 ) . Then 
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H «f 0 • Tak« xeC ,£(*)> gr + 4, Thus, obvious­

ly , th« segment (fa, x > cro«s*a K at a point ^ 4-

+ ^ . If Q.U) *> qrtfy) t than <fr(*4) > g ^ ) -

a contradiction. How suppose there are • norm neighborhood 

II of ^ auch that 2£ c i'%co,gr) and ^ « C , 

**•**!,> > 3"+ < > ' * * 4,2>-" * 8UCh t h Q t T ^ * ^ - * 

—+ q. (^ ) , Let x\ * <&4 , vx^ > n H. . Then 

Furth«roor«f JC^ c C A f *' C- «? , â -#- 4 > and *^ e> 2i -,* 

a contradiction. 

Mow, d«not« by A - tir*Uc<>*i> (S&cp,^ C u Itoiox^^ t"S). 

Suppose A + C - ?h*n there are an F e x and a real it, 

•uch that to, e F C , ,%,+ * < *rvf FA , A«aum« with­

out los» of generality &, m 0 (otherwise take a suitable 

translation). Lot B » C /•> F"' C- oo 9 4 > , Th«n obvi­

ously T « vU B n T~* (~ oo 9 4 ) c €xJt C , and by 

th« preceding part of th« proof, vU C c <ur*il*vtfi'm C • 

Thu«, it T 4* 0 «nd t e T , then t e A , a contradic­

tion. Thus (••• Theorem 2) , 0 4? e&£ & and e&t 3 c 

c Tm't(4) , By the preceding part of th« proof, l e t 

^ e * ejcfu^ ( C n T"4 ( 0) ) » Then /^ £ et* B and thua 

there i s an x € C such thst F(»x)< 0 and <x ;2/y-*x>c 

c B , Lot J)m<t}fy + t(X-ty)eC1 . Th«n i t i s ea­

sy to see the endpoints of <y> + D (# - /y,) l i e in ext C , 

If At m fywp, 3 «c oo , t*1*11 ^ + ^ CiX-^) € e^£ B \ F"1 ( 4 ) , 

a contradiction. Thus j&ujp* D ~ + <X> and sines C con­

tains no l i n e , t « -ĉ vf D > •¥ oo » **• show A * ^ «* 

•h J> Cot - ^ ) tf ^/fceefi^ C • Sines ^ i s an element of 
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/pcjt̂ v* CC A T~4 CO)) , there is a <ur* cloaed hy-

perplane H1 in X* such that H1 supports the set 

C A F ' ^ O ) , H' n F^CO) n C ~ <<%>* and, moreover, 

if *^ € F*"1 (0) n C , 9 Cx^ , X') -* 0 , then 

•*.iw " ̂  ,! ~""* fl ' If ?~* ^0)nC + -C^} , then obvious­

ly H'* p-^CO) . If T'UO) A C » ityl , then we can 

choose auch H' with the above propertied again ao that 

H'+F-^Ctf) . Therefore auppose H' *T~U0) . Take H * 

mHf r\ T~*(0) . Then the codimension of H in X* is 2 9 

H is ur* closed in X * , supports F^CO) A C at ̂  in 

F""'1 CO) and whenever n^e T~4(0) r> C , f(«fa |H)—# 0 , 

then a fortiori £> C ^ , H' ) —* 0 and thus U ^ - ̂ -1-* 

—> 0 . Take now d ** H + KCx - *f) , where K denotes the 

reals. Then D is a weakly-star closed hyperplane in X * 

(c.f.Ul, p. 29). Let ty * 2/jj, - * , If some e € C , FCc) < 

< 0 lies in the other open haIfspace determined by D 

than ia the closed half space in which C r\ T~4 ( 0 ) is con­

tained, then <c, tVi * n -£*""* ^ > lies alfl0 in tnie °~ 

pen halfspace, a contradiction. Similarly for the case 

F C c ) > 0 (taking * instead of ̂  )• Let now J » 

* ix e JC* j &(*)** r9 T tha real * 0-fr <5 e XI .Then 

H »ix e T'HO) j <?£*) * ̂ j f and for 

..r-'c,,, ,<„...,„ i f ^ f ,<.,«_ ifiil-J-L, 

where II G H-.*^, means the common used aupremum norm of 

G e (P"1(0))* . Thus for x^e F ^ C O ) , f C*^, J)-+ 0 iff 

^Coc^, H ) — * 0 , How if for *A~~ X ^ 6 C, <*J norm 
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bounded,. ?(*„,) * 0 , f <*m,> D ) ~-> 0 , than denoting 

Thua p C # ^ , 3> * p C j ^ , J ) tod ? C ^ , K > - * 0 . 

Therefore {& C*^ , ^ > * <?<*U tV*) -+ 0 . How, again 

0 < c f * p C < , ^ > ^ f C**f V < K > 0 , X -c (x> . 

Thua pCoc^,*,) - • 0 • Similarly for the eaaa ^ e C , 

7 C*^) > 0 (taking again *x inataad of ^ ) . Thua 

A $ h<z*>i &cfr¥ C , a contradiction, which complete* tha 

proof. 
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