[1] G. FIX, G. STRANG:
Fourier analysis of the finite element method in Ritz-Galerkin theory. Studies in Applied Mathematics 48 (1969), 265-273.
MR 0258297 |
Zbl 0179.22501
[2] G. STRANG, G. FIX:
A Fourier analysis of the finite element variational method. To appear.
Zbl 0278.65116
[3] J. P. AUBIN:
Behavior of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin's and finite differences methods. Annali della Scuola Normale di Pisa 21 (1967), 599-637.
MR 0233068
[4] J. P. AUBIN: Some variational methods for non-homogeneous boundary value problems. Calcolo, 1969.
[5] J. H. BRAMBLE, A. H. SCHATZ:
Raleigh, Ritz-Galerkin methods for Dirichlet's problem using subspaces without boundary conditions. Comm. Pure Appl. Math. (to appear).
MR 0267788
[6] J. NITSCHE: Über ein Variationsprinzip für Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. (to appear).
[7] J. H. BRAMBLE, A. H. SCHATZ: Least squares methods for 2nd order elliptic boundary value problems. To appear.
[8] L. A. OGANESJAN L. A. RUCHOVEC:
A study of rates of convergence of some variational difference schemes for elliptic equations of second order in a two dimensional domain with smooth boundary. (Russian). Ž. Vyčislit. Mat. i Mat. Fiz. 9 (1969), 1102-1119.
MR 0295599
[9] I. BABUŠKA:
Error bounds for finite element method. Tech. Note BN-630 (1969), University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. Numerische Mathematik 16, 322-333, 1972 .
MR 0288971
[10] I. BABUŠKA:
The rate of convergence for the finite element method. Tech. Note BN-646 (1970), University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in SIAM Journal, Num. Math.
MR 0287715
[11] I. BABUŠKA:
The finite element method for elliptic equations with discontinuous coefficients. Tech. Note BN-631 (1969), University of Maryland, Institute for Fluid. Dynamics and Applied Mathematics, Computing 5, 207-213 (1970),
MR 0277119
[12] I. BABUŠKA: Finite element method for domains with corners. Techn. Note BN-636 (1970), University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, to appear in Computing.
[13] I. BABUŠKA:
The finite element method for elliptic differential equations. Tech. Note BN-653, (1970), University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. Numerical Solution of Partial Differential Equations II, SYNSPADE 1970. Edited by B. Hubbard, Academic Press 1971, New York - London, 69-107.
MR 0273836
[14] I. BABUŠKA:
Computation of derivatives in the finite element method. Tech. Note BN-650 (1970), University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, Comment. Math. Univ. Carolinae 11, 3 (1970), 543-557.
MR 0275694
[15] I. BABUŠKA:
Approximation by Hill functions. Tech. Note BN-648 (1970), University of Maryland, Institute for Fluid Dynamice and Applied Mathematics, Comment. Math. Univ. Carolinae 11, 4 (1970), 787-811.
MR 0292309
[16] I. BABUŠKA: The finite element method for infinite domains I. Tech. Note BN-670 (1970), University of Maryland, Inst. for Fluid Dynamics and Applied Mathematics.
[17] I. BABUŠKA, J. SEGETHOVÁ, K. SEGETH:
Numerical experiments with finite element method I. Tech. Note BN-669 (1970), University of Maryland, Inst. for Fluid Dynamics and Applied Mathematics.
MR 0951920