Previous |  Up |  Next

Article

References:
[1] M. ZLÁMAL: On the finite element method. Num. Math. 12 (1968), 394-409. MR 0243753
[2] J. P. AUBIN: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods. Ann. Scuola Norm. Pisa XXI (1967), 559-637.
[3] P. G. CIARLET M. H. SCHULTZ R. S. VARGA: Numerical methods of high-order accuracy for nonlinear boundary value problems I. One dimens. Mum. Math. 9 (1967), 394-430. MR 0221761
[4] M. H. SCHULTZ: $L^2$ - multivariate approximation theory. SIAM J. Num. Anal. vol. 6, No. 2 (June 1969), 184-209. MR 0251410 | Zbl 0202.34901
[5] M. H. SCHULTZ: $L^\infty$ -multivariate approximation theory. SIAM J. Num. Anal. vol. 6, no. 2 (June 1969), 161-183. MR 0251409 | Zbl 0202.34901
[6] J. H. BRAMBLE M. ZLÁMAL: Triangular elements in the finite element method. To appear. MR 0282540 | Zbl 0276.65052
[7] O. C. ZIENKIEWICZ: The finite element method in structural and continuum mechanics. London, McGraw Hill 1967. Zbl 0189.24902
[8] Y. R. RASHID: On computational methods in solid mechanics and stress analysis. Conf. on the Effective Use of Comp. in the nuclear industry April 21-23, 1969 Knowville.
[9] L. A. OGANESJAN L. A. RUCHOVEC: Variational difference schemes for second order linear elliptic equations in a two dimensional region with a piecewise smooth boundary. (Russ.) Ž. Vyčisl. Mat. i Mat. Fiz. 8 (1968), 97-114. MR 0233525
[10] L. A. OGANESJAN L. A. RUCHOVEC: A study of the rates of convergence of some variational-difference schemes for elliptic equations of second order in a two dimensional domain with smooth boundary. (Russian.) Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1119. MR 0295599
[11] J. NITSCHE: Lineare Spline Funktionen und die Methode von Ritz für elliptische Randwertprobleme. To appear. MR 0255043
[12] I. BABUŠKA: Error-Bounds for finite element method. Tech. Note BN-630, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, November 1969. MR 0288971
[13] I. BABUŠKA: Numerical solution of boundary value problems by the perturbed variational principle. Tech. Note BN-624, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics, October 1969.
[14] I. BABUŠKA: The finite element method for elliptic equationa with discontinuous coefficients. Tech. Note BN-631, University of Maryland, Institute for Fluid. Dynamics and Applied Mathematics, Dec. 1969.
[15] I. BABUŠKA: Finite element method for domains with corners. Tech. Note BN-636, University of Maryland, Inst. for Fluid Dynamics and Applied Mathematics, January 1970.
[16] I. BABUŠKA: The rate of convergence for the finite element method. Technical Note BN-646, University of Maryland, Inst. for Fluid. Dynamics and Applied Mathematics, March 1970. MR 0287715
[17] I. BABUŠKA: Approximation by hill functions. Tech. Note BN-648, Univ. of Maryland, Inst. for Fluid Dynamics and Applied Mathematics, March 1970.
[18] K. YOSIDA: Functional analysis. New York, Academic Press 1965. MR 0180824 | Zbl 0126.11504
[19] I. M. GELFAND G. M. SHILOV: Generalized functions. (translated from Russian), Vol. 1, Vol. 2. Academic Press, New York - London.
[20] J. SEGETHOVÁ: Numerical construction of the hill functions. Tech. Rep. 70-110-NGL-21-002-008, University of Maryland, Computer Science Center, April 1970.
[21] H. ARONSZAJN: Boundary value of functions with finite Dirichlet integral. Conf. on Part. Diff. Equa. No. 14, University of Kansas 1955.
[22] M. I. SLOBODECKIJ: Generalized Sobolev spaces and other application to boundary problems for partial differential equations. Leningrad. Gos. Univ. 97 (1958), 54-112. MR 0203222
[23] J. L. LIONS E. MAGENES: Problèmes aux limites non homogènes et applications. Vol. 1, Dunod 1968. MR 0247243
[24] E. STEIN: Lectures Notes. Orsay 66/67.
[25] Jaok PEETRE: Applications de la théorie des espaces d'interpolation dans l'analyse harmonique. Ricerche Mat. 15 (1966), 3-36. MR 0221214
Partner of
EuDML logo