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COMPUTATION OF DERIVATIVES IN THE FINITE ELEMENT METHOD x)

Ivo BABUSKA, College Park

1. Introduction. The finite element method is a ge-
neralized Ritz-Galerkin method using special trial func-
tions. Recently many papers have been written on different
modifications of this method, e.g. [1]) - {17). The error
bounds are mostly in the energy norm. In particular, for
differential equations of second order, the energy norm ie
equivalent to the norm of the Sobolev space sz . It is
possible to get error bounds in spaces of lower derivati-
ves as the energy norm, e.g. in the space Lh‘ See e.g.[2],
(61,0(10],(11),[12). It is also possible to get error bound
in the spaces with higher derivatives for special domains.

In [10] the authors get the error bounds in the high-
er derivatives spaces by smoothing the approximative
solution. This paper deals with a general procedure for
approximation of the derivatives of the solution in the
general case. The procedure will be shown on a model pro-

blem. The approach is very easy to use in the general case.

x) This research was supported in part the National

Science Foundation under Grant No. NSF GU 2061 and in

xg;t by the Atomic Energy Commissien uader Contract No.
AT(40-1) 3443/3.
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2. Some notions and lemmas.
Let R, be m =-dimensional Euclidean space
2 T .2
X=(x,..,x ), Ixl a‘,g’x‘. . Let S(R, ) be the
totality of all rapidly decreasing functions (at oco )

with the common topology (see e.g.[18],p.146). The space
of generaliged functions over S(R_ ) will be denoted

S'(Rm) 1), Let £ € S' . Then the Fourier trans-
form of f will be denoted by F (f ) . More about Fou-
rier transforms of generalized functions is in [18) and
[191].

Definition 2,1. The space W,"(R ), > 0 will
be the space of all functions £ € S' that

(2.1) IFG2 (1+1xV"") e L, (R,,)
and )
2 2 2
(2.2) Q™ e = HFEF A+ 1D, oy

The space W: (R,, )is the Sobolev space (in general frac-
tional). Let w(x) e S' be a function with compact
support. Then <o (x) is a convolutor (see e.g.[19] vol.
2,ch.III.§ 3,4) and we may define the operator A(w, f1)

(2.3) Aca;,m@-;:ﬁ (Flx) e (B |

The operator A (w,.h) is a linear operator on S' in-
to S'dSee ¢.8.019],v01.2,ch.II1,§ 3,4 -]

1) We shall often write S instead of S(R,,) in this
and analogous cases.
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Lemma 2.1. Let < € S' have compact support. Let
A = F(w) . Further let us assume that

(2.4) IA(x)-11 & ClixIt fort>41 ana
Ixled.

(2.5) IA(x)(A+0x1¥)| &« C  for g =

Then

1) for B £ &+ q *FeW;‘(Rm) ve have

(2.6) VA (e, h)Fh g ) < cn”‘ufuw:(km)
with
(2.7) A = mac (B-ox,0) ,

2) for 0B <€x, B2t ,
(2.8) VA (@, h)F-Flyp, | €Ch ”'w‘mm)
where
(2.9) = min(t-f,0c-B)
Broof. 1. Putting g =A(w, n)f we have

(2.10) (Fg.)(x) = A (x4 ) (Ff)(x)

and therefore
_/ng.l’(1+lxl”‘)d.x =

. < IF£12 4+ Ix %P
(2.11) C-f W

-2y 2
€ ChNEN L

dx

because 3 -qg & oc .

1) C will be s generic constant with differnent values on dif-
ferent places .
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2. Putting

we have
(2.13) (Fz)(x) = (A(xn)-1)(FFf)(x)

and therefore using (2.4) and (2.5) for g =0 we get

2 - 412 2 ap
ﬂzﬂw’,;mm)- CR{'M(X"') 1ICER) NI+ I 17P)d x
= o] €
(2.14) g e ]
< Ch2/ [FE)E+IxPP) ix12“d x
nxi<f,

2 apy 12«
+€;{;2£'F(f’(u)l (4+’|-Xl )m-‘-;—)-—— X

£ CAMSIFEI ) 12U+ Ix P )dx .
Our lemma is proved.

Lemma 2.2. Let e W (R,), 94 € W' (Rp)

A € o, 0< h <1 . Further let

(2.5) Uf-gylnee, ) < Cn Il ye e,y

Suppose co (x) € S' is the function fulfilling the ae-
sumption of Lemma 2.1 and y< q,+ B, t 2y, x = 7.
Then

«
(2.16) 1f -A(w,h)g, nw:'(lm’ £Ch nfnw;‘cn,,,,)
where

(2.17) w'w min(t-7,x-7, r -max (g-3,0)) .

m. 1. Let
(2.18) %y = A, ) (£-qy)

ihen we have by Lemma 2.1
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€ CA NP o

. .
vith x-m(g’-[é,O) .

2. We also have by Lesma 2.1

%
(2200 BA(@, 016 -Fhyry s € CRTIF Dy
with
Wy = min (t-7, x-2) .
3. We may write
(2.21) M -Alw, b Iy, ¢

& H-A(o,h)flwﬂ%-)-t- TA (@, ) (f-qp Yo,y and
using (2.19) and (2.20) together with (2.21) we get our
result. ‘

3. Iinite element method.

Let us introduce functions ¢ (x), x € R, , in the

following way. Let
- (3.1) Panyq ) = g, (x) % ¢, (x)
with

(N

@ (x) =14 for Ix| & ,
= 0. for le>%_ .

Further for x 6 R, , x = (x,,..., X ) , put
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m
(3.2) o (20 = T, o x50

We have

o X
(3.3) (Fgg')(x)-m—a-&, x) ,

5

(3.4)  (Fgy)(x) = A% (x)
and

=
(3.5)  (Fg, ) ) = [1 27 ()

For a numerical procedure for gv“( x) see [20].

Let Q ¢« R,, be a bounded domain with the boundary
Q° c C*® . The space W* (Q) for « = 0 will be
the usual Sobolev fractional space. For oc an integer

we have

2 3 Mo g2
(3.6) lw lw;‘(m -MZ“ D “”L,m)

where the sum is over all derivatives of the order 0«
€ lh| € «. Por x =m[x1+6, 0 <6 <1 wein-
troduce the fractional spaces due to Aronesajn [21] and
Slobodetskij [22]

2 2 & .2
(3.7) l“"w;‘cm - 'Wz“"M’*w{‘m 1D MlWa“‘“’

where
e (8) = s ()12

S .
lwlygny= {{— Tt-wfmetw dtdr .
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Putting 2 = R,  we get the space introduced in Defi-
nition 2.1 (with an equivalent norm).
As a model problem let .us seek the weak solution

of the Neumann problem

(3.8) ~Au +u = ¢ on N ,
(3.9) —g%— = 0 on ° .

The following theorem holds
Theorem 3.1. Let fe W,“ (L) , for o = 0.
Then there exists exactly one solution . of the Neu-

mann problem (3.8), (3.9) and

For the proof see [23],ch.2,§ 7.3.
By the finite element method (special version) we shall
understand the following method for computing the appro-
ximate solution “1»( X) . We put

. X=-ZFh

(A1) 4, 60= % ¢ g (BS5E) k22,
where 4 is a multiinteger, i.e. § = (z,,...,4,,) , #;,
v =14,2,..,m integers and with the sum taken o-

ver all z such that

’

12 supng, (2ZEEy 0 4 p Y

1) supfnr g, (x) means the support of the function gh(x).
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The coefficients C, (4 ) in (3.11) are taken so
that they minimize the quadratic functional

- 27,
nf(tét(-b?f)z + 4l Vdx - 2Aff'u.hdx

over all possible choices of the form (3.11).
The following theoream holds

Theorem 3.2. We have

P
(3.13) l“’h"“’nw;(n) € Ch I+ 'w;‘m)
where

(3.14) (u,-m'mv(ac#-4,k—4)-

The theorem follows from the approximation properties of
D (x ) and the basic properties of the Ritz method,
e.g. see {16],117]). It is also possible to prove

Theorem 3.3. let 05754, « 2 0, then
e
(3.15) llu.h-u—ﬂw‘,r £Ch l.fl“fm,
where '(a.-mu'm«(ac-o-Z-g’,/k-'a") .

The theorem follows by the arguments used in [2],[11],

(12] ana [17].

A logical question i3 whether (3.13) holds for > 1.
Let us now show that a small transformation (which

is computationely very cheap) of «, in (3.11) will

guarantee convergence in the space W: (£l) when

v S min (w+2, k).
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Define 3, =mim (ac +2, ) and let Q@ = % - 1
with ¢  an integer. Let us construct a £inite sun

(3.16) Wx) = Zalk)y (x-k)
0 that
(3.17) IFew) (x)-11 £ CIxI™ .

Obviously there exist many such functions. In particular

we may find one 80 that the support of (3.14) will lie

in apriori prescribed cone with the vertex at the origin.
Let «, be the approximate solution given by (3.11).

By the extension theorem (see e.g.[241) we may construct

the function U, (resp. U ) so that

1. U, e W(R,) (resp.Ue WI(R ) )
2°u;,’“‘h (resp. U = )on_n_’

3 WUy bytr y € Claty lytcq,
(resp. llu.l%‘u(m, < C l‘“"w,“ﬂ(_n_) ),

- pa -
4. VU, u.llw;mm) < Clum wlw:‘n, .

Applying Lesma 2.2 we get

lu - A, ) U, nw‘,»m, z
(3.18)
e Ca®Ilfl
w“cm
with

*=%-7T, TEe&gh
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So if we take 0 (x) = (A(w, £)U, ) (x) then we
would get the desired rooqlt. The problem now is how to
determine i’ (x) because U, is in practice ve-

ry hard to construct.
For some X the construction is very easy. In

fact for x far enough from the boundary we have
(3.19) g (%)= Co @) Duug, (x)
where.

(3.20) Cng) = ZC, () (G - &)

and the sum is finite (with only a few terms).
Let us now define (R (cw, ) as the set of allx € R
that E;‘: (x) is given in the form (3.19) and (3.20).
If < has its support in a cone with a proper angle
then for Jh sufficiently small
G, M)A N = F .
We may so construct a finite set c;, 4 =1,2,..., £

with the desired properties so that (Jnt @ (wy,# ) means
interior of , R(wy,A))
(3.21) U Int Q(wj;, ) > 2 .

=1

Obviously it is very easy to construct functions Y (x),
4=1,.,4 oo that y;(x) & C¥, g, (x)=0 out-

L
side of @ (wy; ,h) forall 2 <H and Z y (x) =

=1 for X e Sl . Then we may define
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- L py
(3.22) Aty (x) =%§41y’~ (x) &, *(x)

and for i, (x) (3.18) .';.a valid.

The procedure is very simple from a practical stand-
point. Let us remark that using interpolation technique
(see [25]1)we get the error bound in C norm provided
that o, = m .

References

[1] M. ZLAMAL: On the finite element method. Num.Math.
12(1968) ,394-409.

{21 J.P. AUBIN: Behavior of the error of the approxima-
te solutions of boundary value problems for
linear elliptic operators by Galerkin’s and
finite difference methods. Ann.Scuola Norm.
Pisa XXI(1967),559-637.

[3] P.G., CIARLET, M.H. SCHULTZ,R.S. VARGA: Numerical met-
hods of high-order accuracy for nonlinear
boundary value problems I. One dimens.
Fum,Math.9(1967),394-430.

4] M.H. SCHULTZ: L2- multivariate approximation theo-
ry. SIAM J.Num.Anal,.vol.6,No.2(June 1969),
184-209.

[5) M.H. SCHULTZ: L -multivariate approximation theo-
ry. SIAM J.Num.Anel.vol.6,n0.2(June 1969),
161-183.

- 555 -



6] J.H. BRAMBLE, M. ZLAMAL: Triangular elements in the
finite element method. To appear.

{71 O0.C. ZIENKIEWICZ: The finite element method in struc-
tural and continuum mechanics. London,
McGraw Hill 1967.

[8] Y.R. RASHID: On computational methods in solid me-
chanics and stress analysis. Conf.on the
Effective Use of Comp. in the nuclear in-
dustry April 21-23, 1969 Knowville.

[9] L.A. OGANESJAN, L.A. RUCHOVEC: Variational differen-
ce schemes for second order linear ellip-
tic equations in a two dimensional region
with a piecewise smooth boundary. (Russ.)
Z2.Vy%isl.Mat.i Mat.Fiz.8(1968),97-114.

[10] L.A. OGANESJAN, L.A. RUCHOVEC: A study of the rates
of convergence of some variational-diffe-
rence schemes for elliptic equations of
second order in a two dimensional domain
with smooth boundary. (Russian.) 2.Vy&isl.
Mat.i Mat.Fiz.9(1969),1102-1119.

[11) J. NITSCHE: Lineare Spline Funktionen und die Metho-
de von Ritz fir elliptische Randwertpro-
bleme. To appear.

[12] I. BABUSKA: Error-Bounds for finite element method.
Tech.Note BN-630,University of Maryland,
Institute for Fluid Dynamics and Applied
Mathematics, November 1969.

- 556 -



{131 1. BABUSKA: Numerical solution of boundary value
problems by the perturbed variational prin-
ciple. Tech.Noie BN-624 ,University of Mary-
land,Institute for Fluid Dynamics and App-
lied Mathematics, October 1969.

(14] 1. BABUSKA: The finite element method for elliptic
equations with discontinuous coefficients.
Tech.Note BN-631,University of Maryland,
Institute for Fluid Dynamics and Applied
Mathematics, Dec. 1969.

[15) 1I. BABUSKA: Finite element method for domains with
corners. Tech.Note BN-636,University of Ma-
ryland,Inst.for Fluid Dynemics and Applied
Mathematics,January 1970.

[16]) 1I. BABUSKA: The rate of convergence for the finite
element method. Technical Note BN-646,Uni-
versity of Maryland,Inst.for Fluid Dyna-
mics and Applied Mathematics, March 1970.

17y 1. BABUSKA: Approximation by hill functions. Tech.
Note BN-648,Univ.of Maryland,Inst.for Fluid
Dynamics and Applied Mathematics,March 1970.

(18] K. YOSIDA: Functional analysis. New York,Academic
Press 1965.

{19] 1I.M. GELFAND, G.M. SHILOV: Generalized functions
(translated from Russian),Vol.l,Vol.2,Aca-
demic Press,New York-London.

[20) J. SEGETHOVA: Numerical construction of the hill

‘ functions. Tech.Rep.70-110-NGL-21-002-008,

- 557 -



f211

[22]

‘[23)

[24)
(251

University of Maryland,Computer Sci-
ence Center,April 1970.

H. ARONSZAJN: Boundary value of functions with fi-
nite Dirichlet integral, Conf.on Part.
Diff.Equa.No.14,University of Kansas
1955.

M.I. SLOBODECKIJ: Generalized Sobolev spaces and
other application to bodndary problems
for partial differential equations.
Leningrad.Gos.Univ.)97(1958),54-112.

J.L. LIONS, E. MAGENES: Problemes aux limites non
homogenes et applications. Vol.l, Du-
nod 1968.

E. STEIN: Lectures Notes, Orsay 66/67.

Jaok PEETRE: Applications de la théorie des espaces
d’interpolation dans 1 analyse harmo-

nique. Ricerche Mat.15(1966),3-36.

Institute for Fluid Dynamics and

Applied Mathematics

University of Maryland

College Park, Maryland
U.S.A.

(Oblatum 5. 5.1970)

- 558 -



		webmaster@dml.cz
	2012-04-27T19:28:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




