Previous |  Up |  Next

Article

References:
[1] N. LEVINSON: Small periodic perturbations of an autonomous system with a stable orbit. Ann. of Math. 52 (1950), 727-739. MR 0037974 | Zbl 0038.24903
[2] N. N. BOGOLJUBOV, Yu. A. MITROPOLSKIJ: Asymptotic methods in the theory of nonlinear oscillations. (Russian), Moscow 1955 (rev. 1958).
[3] W. T. KYNER: Invariant manifolds. Rend. del Circ. Mat. Palermo, Ser. II, 9 (1961), 98-110. MR 0149038 | Zbl 0104.06303
[4] J. K. HALE: Integral manifolds of perturbed differential systems. Ann. of Math. 73 (1961), 496-531. MR 0123786 | Zbl 0163.32804
[5] F. S. DILIBERTO: Perturbation theorems for periodic surfaces I, II. Rend. del Circ. Mat. Palermo, Ser. II, 9 (1961), 265-299, 10 (1962), 111-162.
[6] I. KUPKA: Stability des variétés invariantes d'un champ de vecteurs pour les petites perturbations. C. R. Acad. Sci. Paris, 258 Groupe 1 (1964), 4197-4200. MR 0162036
[7] R. J. SACKER: A perturbation theorem for invariant Riemannian manifolds. Differential equations and dynamical systems, Proceedings of an International Symposium, Academic Press 1967, pp. 43-54. MR 0218700 | Zbl 0189.39801
[8] J. KURZWEIL: Invariant manifolds for flows, Differential equations and dynamical systems. Proceedings of an Internat. Symposium, Academic Press 1967, pp. 431-468. MR 0218698
[9] J. JARNÍK J. KURZWEIL: On invariant sets and invariant manifolds of differential systems. Journ. Diff. Equat. 6 (1969), 247-263. MR 0249729
Partner of
EuDML logo